Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T12:06:31.878Z Has data issue: false hasContentIssue false

Changes in the Brain Catecholamines in Patients with Dementia of Alzheimer Type

Published online by Cambridge University Press:  29 January 2018

R. Adolfsson
Affiliation:
Department of Psychiatry, University of Umea, S–901 85 Umea, Sweden
C. G. Gottfries
Affiliation:
Psychiatric Research Centre, St Jörgen's Hospital, University of Gothenburg Sweden
B. E. Roos
Affiliation:
Department of Psychiatry, University of Uppsala, Sweden
B. Winblad
Affiliation:
Department of Pathology, University of Umea

Summary

Brain monoamine concentrations were determined post mortem in 19 patients with dementia of Alzheimer type. Samples were taken from 10 parts of the brain and compared with an age-matched control group.

There were lower mean concentrations of dopamine in the demented group of patients in seven regions of the brain, and two of these were at a significant level. There were also significantly lower concentrations of homovanillic acid in the nucleus caudatus and in the putamen. The means of the concentrations of noradrenaline were also lower, and in the putamen and the cortex gyrus frontalis significant differences were observed. The 5-hydroxytryptamine concentrations were slightly lower in the demented group but the differences did not reach significance. The degree of intellectual deterioration was negatively correlated with the noradrenaline concentrations in the hypothalamus and the cortex gyrus cinguli.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1979 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolfsson, R., Gottfries, C.-G. & Winblad, B. (1978) Methodological aspects of post-mortem investigations of human brain—with special reference to monoamines and related enzymes. In Neuro-psychopharmacology (Proc. of the 10th CINP-meeting. Quebec, July, 1976). (Eds. Deniker, P., Radonco-Thomas, C. and Villeneuve, A.). Oxford: Pergamon Press, pp 1597–604.Google Scholar
Andén, N. E., Roos, B. E. & Werdinius, B. (1963) On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sciences, 2, 448–50.CrossRefGoogle Scholar
Andén, N. E. & Magnusson, T. (1967) An improved method for the fluorimetric determination of 5-hydroxytryptamine (5HT) in tissue. Acta Physiologica Scandinavica, 69, 8794.CrossRefGoogle Scholar
Anlezark, G. M., Crow, T. J. & Greenway, A. P. (1973) Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science, 181, 682–4.CrossRefGoogle ScholarPubMed
Bernheimer, H., Birkmayer, W. & Hornykiewicz, O. (1963) Zur Biochemie des Parkinson-Syndroms des Menschen: Einfluss der Monoaminoxydase-Hemmer-Therapie auf die Konzentration des Dopamins, Noradrenaline und 5-Hydroxytryptamine im Gehirn. Wiener Klinische Wochenschrift, 41, 465–9.Google Scholar
Bernheimer, H. & Hornykiewicz, O. (1965) Herabgesetzte Konzentration der Homovanillinsäure im Gehirn von parkinsonkranken Menschen als Ausdruck der Störung des zentralen Dopaminstoff-Wechsels. Wiener Klinische Wochenschrift, 43, 711–5.Google Scholar
Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. & Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Journal of the Neurological Sciences, 20, 415–55.CrossRefGoogle ScholarPubMed
Bertler, Å., Carlsson, A. & Rosengren, E. (1958) A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta Physiologica Scandinavica, 44, 273–92.CrossRefGoogle ScholarPubMed
Blessed, G., Tomlinson, B. E. & Roth, M. (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. British Journal of Psychiatry, 114, 797811.CrossRefGoogle ScholarPubMed
Bowen, D. M., Smith, C. B. & Davison, A. N. (1973) Molecular changes in senile dementia. Brain, 96, 849–56.CrossRefGoogle ScholarPubMed
Bowen, D. M., White, P., Flack, R. H. A., Smith, C. B. & Davison, A. N. (1974) Brain-decarboxylase activities as indices of pathological change in senile dementia. Lancet, 1, 1247–9.Google ScholarPubMed
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 99, 459–96.CrossRefGoogle ScholarPubMed
Carlsson, A. & Lindqvist, M. (1962) In-vivo decarboxylation of γ-methyl DOPA and γ-methyl metatyrosine. Acta Physiologica Scandinavka, 54, 8794.CrossRefGoogle Scholar
Carlsson, A. & Lindqvist, M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and norepinephrine in mouse brain. Acta Pharmacologica, 20, 140–4.Google ScholarPubMed
Carlsson, A. & Winblad, B. (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. Journal of Neural Transmission, 38, 271–6.CrossRefGoogle ScholarPubMed
Colon, E. J. (1973) The cerebral cortex in presenile dementia. A quantitative analysis. Acta Neuropathologica (Berl.), 23, 281–90.Google ScholarPubMed
Davies, P. & Maloney, A. J. F. (1976) Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet, ii, 1403.CrossRefGoogle Scholar
Dayan, A. D. (1974) The brain, ageing, and dementia. Psychological Medicine, 4, 349–52.CrossRefGoogle ScholarPubMed
Drachman, D. A. & Levitt, J. (1974) Human memory and the cholinergic system. Archives of Neurology, Chicago, 30, 113–21.Google ScholarPubMed
Drachman, D. A. (1977) Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology, 27, 783–90.CrossRefGoogle ScholarPubMed
Engel, J. (1972) Neurochemistry and behaviour: a correlative study with special reference to central catecholamines. Göteborg: Thesis, Elanders Boktryckeri AB.Google Scholar
Fahn, S., Libsch, L. R. & Cutler, R. W. (1971) Monoamines in the human neostriatum: topographic distribution in normals and in Parkinson's disease and their role in akinesia, rigidity, chorea and tremor. Journal of the Neurological Sciences, 14, 427–55.CrossRefGoogle ScholarPubMed
Fischer, R. H. (1975) The urinary excretion of homovanillic acid and 4-hydroxy-3-methoxy mandelic acid in the elderly demented. Gerontological Clinks, 14, 172–5.Google Scholar
Forno, L. S. (1966) Pathology of Parkinsonism. Journal of Neurosurgery, 24, Suppl. 2, 266–71.Google Scholar
Gonates, N. K. & Gambetti, P. (1970) The pathology of the synapse in Alzheimer's disease. In Alzheimer's Disease and Related Conditions. (Eds. Wolstenholme, G. W. W. and O'Connor, M.). London: Churchill, pp 169–83.Google Scholar
Gottfries, C. G. & Gottfries, I. (1968) Geriatriskt skattningsschema III. Stencil. S:t Lars sjukhus, Lund.Google Scholar
Gottfries, C. G., Gottfries, I. & Roos, B. E. (1969) The investigation of homovanillic acid in the human brain and its correlation to senile dementia. British Journal of Psychiatry, 115, 563–74.CrossRefGoogle ScholarPubMed
Gottfries, C. G., Gottfries, I. & Roos, B. E. (1970) Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid related to rated mental and motor impairment in senile and presenile dementia. Acta Psychiatrica Scandinavica, 46, 99105.Google ScholarPubMed
Gottfries, C. G. & Roos, B. E. (1973) Acid monoamine metabolites in cerebrospinal fluid from patients with presenile dementia (Alzheimer's disease). Acta Psychiatrica Scandinavica, 49, 257–63.CrossRefGoogle Scholar
Gustafson, L., Brun, A. & Ingvar, D. H. (1977) Presenile dementia: clinical symptoms, pathoanatomical findings and cerebral blood flow. In Cerebral Vascular Disease. (Eds. Meyer, J., Lechner, H. and Reivich, M.). Amsterdam: Excerpta Medica, pp 59.Google Scholar
Häggendahl, J. (1963) An improved method for fluorimetric determination of small amounts of adrenaline and noradrenaline in plasma and tissues. Acta Physiologica Scandinavica, 59, 242–54.Google Scholar
Hornykiewicz, O. (1966) Dopamine (3-hydroxytryptamine) and brain function. Pharmacological Reviews, 18, 925–64.Google Scholar
Huckman, M. S., Fox, J. & Topel, J. (1975) The validity of criteria for the evaluation of cerebral atrophy by computerized tomography. Radiology, 116, 8592.CrossRefGoogle Scholar
Johannesson, G., Brun, A., Gustafson, I. & Ingvar, D. H. (1977) EEG in presenile dementia related to cerebral blood flow and autopsy findings. Acta Neurologica Scandinavica, 56, 89103.CrossRefGoogle ScholarPubMed
Jonsson, J. & Levander, T. (1970) A method for the simultaneous determination of 5-hydroxy-3-indoleamine (5HIAA) and 5-hydroxy-tryptamine (5HT) in brain tissue and cerebrospinal fluid. Acta Physiologica Scandinavica, 78, 4351.CrossRefGoogle ScholarPubMed
Keller, H. H., Bartholini, G. & Pletscher, A. (1973) Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. European Journal of Pharmacology, 23, 183–6.CrossRefGoogle ScholarPubMed
Korf, J., Roos, B. E. & Werdinius, B. (1971) Fluorimetric determination of homovanillic acid (HVA) in tissues using union exchange separation and mixed solvent elimination. Acta Chemica Scandinavica, 25, 333–5.CrossRefGoogle Scholar
Mehraein, P., Yamada, M. & Tarnowska-Dziduszko, E. (1975) Quantitative study on dendrites and dendritic spines in Alzheimer's disease and senile dementia. Advances in Neurology, 12, 453–8.Google Scholar
Murphy, D. L. (1972) L-dopa, behavioural activation and psychopathology. In Neurotransmitters (Res. publ. ass. res. nerv. ment. dis., vol. 50). Baltimore: Williams & Williams, pp 472–92.Google Scholar
Müller, C. & Ciompi, L. (1968) Senile Dementia. Bern: Hübergs.Google Scholar
Obrist, W. D., Sokoloff, L., Lassen, N. A., Lane, M. H., Butler, R. N. & Feinberg, J. (1963) Relation of EEG to cerebral blood flow and metabolism in old age. EEG Clinical Neurophysiology, 15, 510–19.CrossRefGoogle ScholarPubMed
Parkes, J. E., Marsden, C. D., Rees, J. E., Curzon, G., Katamaneni, B. E., Knill-Jones, R., Akbar, A., Das, S. & Kataria, M. (1974) Quarterly Journal of Medicine, New Series, 28, 4961.Google Scholar
Pearce, J. (1974) The extrapyramidal disorders of Alzheimer's disease. European Neurology, 12, 94103.CrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet, 1, 189.CrossRefGoogle ScholarPubMed
Robinson, D. S., Davies, J. M., Nies, A., Colburn, R. W., Davis, J. N., Bourne, H. R., Bunney, W. E., Shaw, D. M. & Coppen, A. (1972) Ageing, monoamines and monoamine oxidaser levels. Lancet, i 290–1.Google Scholar
Spillane, J. A., White, P., Goodhardt, M. J., Flack, R. H. A., Bowen, D. M. & Davison, A. N. (1977) Selective vulnerability of neurons in organic dementia. Nature, 266, 558–9.CrossRefGoogle ScholarPubMed
Terry, R. D. (1978) Ageing, senile dementia and Alzheimer's disease. In Alzheimer's Disease: Senile Dementia and Related Disorders (Ageing, vol. 7). (Eds. Terry, R. D. and Bick, K. L.). New York: Raven Press, pp 1114.Google Scholar
Terry, R. D. & Wisniewski, H. M. (1972) Ultrastructure of senile dementia and of experimental analogs. In Ageing and the Brain. (Ed. Gaitz, C. M.). New York: Plenum Press. pp 89116.CrossRefGoogle Scholar
Tomlinson, B. E., Blessed, G. & Roth, M. (1970) Observations on the brains of demented old people. Journal of the Neurological Sciences, 11, 205–42.CrossRefGoogle ScholarPubMed
White, P., Goodhardt, M. J., Keet, J. P., Hiley, C. R., Carrasco, L. H. & Williams, I. E. (1977) Neurocortical cholinergic neurons in elderly people. Lancet, 1, 669–70.Google Scholar
Willanger, R., Thygesen, P., Nielsen, R. & Petersen, O. (1968) Intellectual impairment and cerebral atrophy. A psychological and neuroradiological investigation. Danish Medical Bulletin, 15, 6993.Google Scholar
World Federation op Neurology (1959) Collaborative study of epidemiological factors in cerebral vascular disease. Coding Guide, Antwerp.Google Scholar
Yamada, M. & Mehraein, P. (1977) Verteilungsmuster der senilen Veränderungen in den Hirnstammkernen. Folia Psychiatrica et Neurologica Japonica, 31, 219–24.Google Scholar
Zis, A. P., Fibiger, H. C. & Philips, A. G. (1974) Reversal by l-dopa of impaired learning due to destruction of the dopaminergic nigro-neostriatal projection. Science, 195, 960–2.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.