Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T16:27:48.024Z Has data issue: false hasContentIssue false

Selective Decreases in MAO-B Activity in Post-Mortem Brains from Schizophrenic Patients with Type II Syndrome

Published online by Cambridge University Press:  02 January 2018

Extract

The activities of the A and B forms of the enzyme monoamine oxidase (MAO, E.C. 1.4.3.4) have been assessed with the substrates 5-hydroxytryptamine and benzylamine respectively in seven areas of the brains of 39 patients with schizophrenia and 44 control subjects. Whereas previous studies have found the enzyme unchanged in brain in schizophrenia, in this study there was a modest but significant decrease in the activity of MAO-B in frontal and temporal cortices and in amygdala. This decrease could not be accounted for by neuroleptic medication, age, sex or post-mortem variables. In a series of 22 patients who had been assessed in life, the reduction in MAO-B activity was found to be associated specifically with the presence of negative symptoms (flattening of affect and paucity of speech). The findings are therefore consistent with other evidence for structural and neurochemical change in the temporal lobe that have been associated with the type II (defect state) syndrome of schizophrenia. The change in enzyme activity is unlikely to be related to a change in monoamine metabolism but may reflect a disturbance in glial function. The change in MAO-B activity in brain in this study is confined to particular areas of brain and a subgroup of patients; it is thought to be entirely unrelated to earlier reports of reductions of enzyme activity in platelets, which are probably attributable to prolonged neuroleptic medication.

Type
Papers
Copyright
Copyright © Royal College of Psychiatrists, 1987 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolfsson, R., Gottfries, C.-G., Oreland, L., Wiberc, A. & Winblad, B. (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sciences, 27, 10291034.CrossRefGoogle ScholarPubMed
Belmaker, R. H. (1984) The lesions of platelet monoamine oxidase. Psychological Medicine, 14, 249253.Google Scholar
Benedetti, M. S. & Keane, P. E. (1980) Differential changes in monoamine oxidase A and B activity in the aging rat brain. Journal of Neurochemistry, 35, 10261032.Google Scholar
Birkhauser, H. (1941) Cholinesterase und Mono-aminoxylase im zentralen Neurensystem. Schweizerische Medizinische Wochenschrift, 71, 750752.Google Scholar
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. P., Jacoe, R., Johnstone, E. C., Marsh, L. (1986) Postmortem evidence for structural brain changes in schizophrenia. Archives of General Psychiatry, 43, 3642.CrossRefGoogle ScholarPubMed
Christmas, A. J., Coulson, C. J., Maxwell, D. R. & Riddell, D. (1972) A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors. British Journal of Pharmacology, 45, 490503.Google Scholar
Cross, A. J., Crow, T. J., Glover, V., Lofthouse, R., Owen, F. & Riley, G. J. (1977) Monoamine oxidase activity in postmortem brains of schizophrenics and controls. British Journal of Clinical Pharmacology, 4, 719P.Google Scholar
Crow, T. J. (1980) Molecular pathology of schizophrenia: more than one disease process? British Medical Journal, 280, 6668.CrossRefGoogle ScholarPubMed
Crow, T. J. Baker, H. F., Cross, A. J., Joseph, M. H., Lofthouse, R., Lonoden, A., Owen, F., Riley, G. J., Glover, V. & Killpack, W. S. (1979) Monoamine mechanisms in chronic schizophrenia: postmortem neurochemical findings. British Journal of Psychiatry, 134, 249256.Google Scholar
Dearmond, S. J., Fusco, H. M. & Dewey, M. M. (1974) Structure of Human Brain. London: Oxford University Press.Google Scholar
Delisi, L. E., Wise, C. D., Bridge, T. P., Potkin, S. G. & Wyatt, R. J. (1981) A probable effect of neuroleptic medication on platelet monoamine oxidase activity. Psychiatry Research, 2, 179186.CrossRefGoogle Scholar
Delisi, L. E., Wise, C. D., Bridge, T. P., Potkin, S. G. & Wyatt, R. J., Phelps, P. H., Petkin, S. G. & Wyatt, R. J. (1982) Monoamine oxidase and schizophrenia. In Biological Markers in Psychiatry and Neurology (eds E. Usdin & I. Hanin). Oxford: Pergamon.Google Scholar
Domino, E. F., Krause, Q. R. & Bowers, J. (1973) Various enzymes involved with putative neurotransmitters. Archives of General Psychiatry, 29, 195201.Google Scholar
Eckert, B., Gottfries, C. G., Von Knorring, L., Oreland, L., Wiberg, A. & Winblad, B. (1980) Brain and platelet monoamine oxidase in mental disorders: 1. Schizophrenics and cycloid psychotics. Progress in Neuropsychopharmacology, 4, 5768.Google Scholar
Fahn, S. & Cote, L. J. (1976) Stability of enzymes in post-mortem rat brain. Journal of Neurochemistry, 26, 10391042.CrossRefGoogle ScholarPubMed
Feighner, J. P., Robins, E., Guze, S. B., Winokur, G. & Munoz, R. (1972) Diagnostic criteria for use in psychiatric research. Archives of General Psychiatry, 26, 5763.CrossRefGoogle ScholarPubMed
Ferrier, I. N., Roberts, G. W., Crow, T. J., Johnstone, E. C., Owens, D. G. G., Lee, V. C., O'Shaughnessy, D., Adrian, T. E., Polak, J. M. & Bloom, S. R. (1983) Reduced cholecysto-kinin-like and somefostatin-like immunoreactivity in libibic lobe is associated with negative symptoms in schizophrenia. Life Sciences, 33, 475482.Google Scholar
Fowler, C. J., Carlsson, A. & Winblad, B. (1981) Monoamine oxidase-A and-B activities in the brain stem of schizophrenics and non-schizophrenic psychotics. Journal of Neural Transmission, 52, 2332.Google Scholar
Friedhoff, A. J., Miller, J. C. & Weisenfennd, J. (1978) Human platelet MAO in drug-free and medicated schizophrenic patients. American Journal of Psychiatry, 135, 952955.Google ScholarPubMed
Friedman, E., Shoprin, B., Salthananthan, G. & Gershon, S. (1974) Blood platelet monoamine oxidase activity in psychiatric patients. American Journal of Psychiatry, 135, 952955.Google Scholar
Gattaz, W. F. (1983) Platelet MAO activity in major psychoses. Modem Problems of Pharmacopsychiatry, 19, 315320.Google Scholar
Gottfries, C. G., Oreland, L., Wiberg, A. & Winblad, B. (1974) Brain-levels of monoamine oxidase in depression. The Lancet, ii, 360361.Google Scholar
Green, A. R. & Grahame-Smith, D. G. (1978) Process regulating the functional activity of brain 5-hydroxytryptamine: results of animal experimentation and their relevance to the understanding and treatment of depression. Pharmacopsychiatria, 11, 316.Google Scholar
Johnston, J. P. (1968) Some observations on a new inhibitor of monoamine oxidase in brain tissue. Biochemical Pharmacology, 17, 12851297.CrossRefGoogle ScholarPubMed
Knoll, J. & Magyar, K. (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Advances in Biochemical Psychopharmacology, 5, 393408.Google Scholar
Krawiecka, M., Goldberg, D. & Vaughan, M. (1977) A standardised psychiatric assessment for rating chronic psychotic patients. Acta Psychiatrica Scandinavica, 55, 299308.Google Scholar
Mann, J. & Thomas, J. M. (1979) Platelet monoamine oxidase activity in schizophrenia. British Journal of Psychiatry, 134, 366371.CrossRefGoogle ScholarPubMed
Murphy, D. L. & Wyatt, R. J. (1979) Reduced monoamine oxidase activity in blood platelets from schizophrenic patients. Nature, 238, 225226.Google Scholar
Oreland, L., Fowler, C. J., Carlsson, A. & Magnusson, T. (1980) Monoamine oxidase-A and-B activity in the rat brain after hemitransection. Life Sciences, 26, 139146.CrossRefGoogle ScholarPubMed
Oreland, L., Fowler, C. J., Carlsson, A. & Magnusson, T. Arai, Y., Stenstrom, A. & Fowler, C. J. (1983) Monoamine oxidase activity and localisation in the brain and the activity in relation to psychiatric disorders. Modem Problems of Pharmacopsychiatry, 19, 246254.CrossRefGoogle ScholarPubMed
Owen, F., Bourne, R. C., Crow, T. J., Johnstone, E. C., Bailey, A. R. & Hershon, H. T. (1976) Platelet monoamine oxidase in schizophrenia. Archives of General Psychiatry, 33, 13701373.Google Scholar
Owen, F., Bourne, R. C., Crow, T. J., Johnstone, E. C., Bailey, A. R. & Hershon, H. T., Fadhli, A. A. & Johnstone, E. C. (1981) Platelet monoamine oxidase activity in acute schizophrenia: relationship to symptomatology and neuroleptic medication. British Journal of Psychiatry, 139, 1622.Google Scholar
Reveley, M. A., Glover, V., Sandler, M. & Spokes, E. G. (1981) Brain monoamine oxidase activity in schizophrenics and controls. Archives of General Psychiatry, 38, 663665.Google Scholar
Reynolds, G. P. (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature, 305, 527529.CrossRefGoogle ScholarPubMed
Robinson, D. S., Lovenberg, W., Reiser, H. & Sjoerdsma, A. (1968) Effects of drugs on human blood platelet and plasma amine oxidase activity in vitro and in vivo . Biochemical Pharmacology, 17, 109119.CrossRefGoogle ScholarPubMed
Robinson, D. S., Lovenberg, W., Reiser, H. & Sjoerdsma, A., Davis, J. M., Nies, A., Colburn, R. W., Davis, J. N., Bourne, H. R., Bunney, W. E., Shaw, D. M. & Coppen, A. J. (1972) Ageing, monoamines and monoamine-oxidase levels. The Lancet, i, 290291.CrossRefGoogle Scholar
Schwartz, M. A., Aikens, A. N. & Wyatt, R. J. (1974) Monoamine oxidase activity in brains from schizophrenics and mentally normal individuals. Psychopharmacologia, 38, 319328.Google Scholar
Sutherland, E. W., Cori, C. F., Haynes, R. & Olsen, N. S. (1949) Purification of hyperglycemic-glycogenolytic factor from gastric mucosa. Journal of Biological Chemistry, 180, 825837.Google Scholar
Suzuki, O., Katsumata, Y. & Maxakazu, O. (1979) Effect of ?-phenylethylamine concentration on its substrate specificity for type A and type B monoamine oxidase. Biochemical Pharmacology, 28, 953956.CrossRefGoogle ScholarPubMed
Takahashi, S., Yamane, H. & Naosuke, T. (1975) Reduction of blood platelet monoamine oxidase activity in schizophrenic patients on phenothiomines. Folia Psychiatrica et Neurologica Japonica (Niijata), 29, 207214.Google Scholar
Utena, H., Kanamura, H., Suda, S., Nakamura, R., Machiyama, Y. & Takahashi, R. (1968) Studies on the regional distribution of the monoamine oxidase activity in the brains of schizophrenic patients. Proceedings of the Japanese Academy, 44, 10781083.Google Scholar
Vogel, W. H., Orfei, V. & Century, B. (1969) Activities of enzymes involved in the formation and destruction of biogenic amines in various areas of human brain. Journal of Pharmacology and Experimental Therapeutics, 165, 196203.Google ScholarPubMed
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974) Measurement and Classification of Psychiatric Symptoms. London: Cambridge University Press.Google Scholar
Wise, C. D., Baden, M. M. & Stein, L. (1974) Post-mortem measurement of enzymes in human brain: evidence of a central noradrenergic deficit in schizophrenia. Journal of Psychiatric Research, 11, 185198.Google Scholar
Wyatt, R. J., Potkin, S. G. & Murphy, D. L. (1979) Platelet monoamine oxidase activity in schizophrenia: a review of the data. American Journal of Psychiatry, 136, 377385.Google Scholar
Wyatt, R. J., Potkin, S. G. & Murphy, D. L., Bridge, T. P., Phelps, B. H. & Wise, C. D. (1980) Monoamine oxidase in schizophrenia: an overview. Schizophrenia Bulletin, 6, 199207.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.