Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T16:00:48.926Z Has data issue: false hasContentIssue false

Major Genes for Major Affective Disorder?

Published online by Cambridge University Press:  02 January 2018

Peter McGuffin*
Affiliation:
University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN

Extract

Some authorities view the history of science as a sort of saltatory process in which periods of modest gain and of plodding ‘normal science’ are interrupted by dramatic leaps forward and episodes of ‘revolution’ (Kuhn, 1962). If this is so then genetics has, for the past several years, been in a phase of remarkably sustained and continuous revolution. The advent of the ‘new genetics' of recombinant DNA has resulted in new discoveries occurring at a breath-taking pace, many of which have important clinical implications. Recent findings of psychiatric relevance have included the localisation of the gene for Huntington's chorea on the short arm of chromosome 4 (Gusella et al, 1983) and the use of DNA probes in predictive testing (Harper, 1986). Advances have been achieved in the understanding of the molecular biology of Alzheimer's disease, and at least some of the familial forms of the condition appear to be linked to a gene on chromosome 21 (St George-Hyslop et al, 1987). However, perhaps the most exciting development for most psychiatrists has been the report (Egeland et al, 1987) of a major gene for manic-depressive illness linked to a marker on the short arm of chromosome 11. Could this signal the leap of biological psychiatry into a revolutionary phase? It is perhaps appropriate before attempting to answer this that we give some consideration to the recent historical background.

Type
Annotation
Copyright
Copyright © Royal College of Psychiatrists, 1988 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angst, J. (1966) Zur Atiologie und Nosologie endogener depressiver Psychosen, Monographen aus der Neurologie und Psychiatrie, No. 112. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Baron, M., Risch, N., Hamburger, R. et al (1987) Genetic linkage between X chromosome markers and manic depression. Nature, 326, 806808.Google Scholar
Bertelsen, A., Harvald, B. & Hauge, M. (1977) A Danish twin study of manic-depressive disorders. British Journal of Psychiatry, 130, 330351.CrossRefGoogle ScholarPubMed
Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 312331.Google ScholarPubMed
Bucher, K. D., Elston, R. C., Green, R., Whybrow, P., Helzer, J., Reich, T., Clayton, P. & Winokur, G. (1981) The transmission of manic depressive illness – II. Segregation analysis of three sets of family data. Journal of Psychological Research, 16, 6578.Google Scholar
Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. (1973) Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Science, USA, 70, 32403244.Google Scholar
Detera-Wadleigh, S. D., Berretini, W. H., Goldin, L. R. et al (1987) Close linkage of C-Harvey ras-1 and the insulin gene to affective disorder is ruled out in three North American pedigrees. Nature, 325, 806807.Google Scholar
Donis-Keller, H., Green, P., Helms, C. et al (1987) A genetic linkage map of the human genome. Cell, 51, 319337.Google Scholar
Egeland, J. A., Gerhard, D. S., Pauls, D. L., Sussex, J. N., Kidd, K. K., Allen, C. R., Hostetter, A. M. & Housman, D. E. (1987) Bipolar affective disorder linked to DNA markers on chromosome 11. Nature, 325, 783787.Google Scholar
Falconer, D. S. (1965) The inheritance of liability to certain diseases, estimated from the incidence among relatives. Annals of Human Genetics, 29, 5176.Google Scholar
Fienberg, A. P. & Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Annals of Biochemistry, 132, 613.Google Scholar
Flemebaum, A. & Larson, J. W. (1976) ABO-Rh blood groups and psychiatric diagnosis: a critical review. Diseases of the Nervous System, 37, 581583.Google Scholar
Gershon, E. S., Bunney, W. E., Leckman, J. F., Van Eeroewegh, M. & Debauche, B. A. (1976) The inheritance of affective disorders: a review of data and hypotheses. Behaviour Genetics, 6, 227261.CrossRefGoogle ScholarPubMed
Gershon, E. S., Mendlewicz, J., Gastpar, M., Goldin, L. R., Kiecholz, P., Rafaelson, O. J., Vartanian, F. & Bunney, W. E. (1980) A collaborative study of genetic linkage of bipolar manic depressive illness and red/green colour blindness. Acta Psychiatrica Scandinavica, 61, 319338.Google Scholar
Gershon, E. S., Hamovit, J., Guroff, J. J. et al (1982) A family study of schizoaffective bipolar I, bipolar II, unipolar and normal control probands. Archives of General Psychiatry, 39, 11571167.CrossRefGoogle ScholarPubMed
Giblett, E. R. (1969) Genetic Markers in Human Blood. Oxford: Blackwell.Google Scholar
Goldin, L. R. & Gershon, E. S. (1983) Association and linkage studies of genetic marker loci in major psychiatric disorders. Psychiatric Developments, 4, 387418.Google Scholar
Goldin, L. R. & Gershon, E. S., Targum, S. P., Sparkes, R. S. & McGinniss, M. (1983) Segregation and linkage analysis in families of patients with bipolar, unipolar and schizoaffective mood disorders. American Journal of Human Genetics, 35, 274288.Google Scholar
Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A. et al (1983) A polymorphic marker genetically linked to Huntington's disease. Nature, 306, 234238.Google Scholar
Harper, P. S. (1986) The prevention of Huntington's chorea. Journal of the Royal College of Physicians, 20, 714.Google Scholar
Hodgkinson, S., Sherrington, R., Gurling, H. A. D. et al (1987) Molecular genetic evidence for heterogeneity in manic depression. Nature, 325, 805806.Google Scholar
Irvine, D. G. & Miyashita, H. (1965) Blood types in relation to depression and schizophrenia. Canadian Medical Association Journal, 92, 611614.Google Scholar
Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314, 6773.CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Wilson, V., Weatherall, D. J. & Ponder, B. A. J. (1986) DNA ‘fingerprints’ and segregation analysis of multiple markers in human pedigrees. American Journal of Human Genetics, 39, 1124.Google Scholar
Knorring, A. von, Cloninger, C. R., Bohman, M. & Sigvardsson, S. (1983) An adoption study of depressive disorders and substance abuse. Archives of General Psychiatry, 40, 943950.Google Scholar
Kraepelin, E. (1922) Manic-Depressive Insanity and Paranoia (trans Barclay, R. M.). Edinburgh: E. & S. Livingstone.Google Scholar
Kuhn, T. S. (1962) The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
Lange, K. & Boehnke, M. (1982) How many polymorphic marker genes will it take to span the human genome? American Journal of Human Genetics, 34, 842845.Google Scholar
Leonhard, K. (1959) Aufteilung der Endopen Psychosen. Berlin: Akademie Verlag.Google Scholar
Masters, A. B. (1967) The distribution of blood groups in psychiatric illness. British Journal of Psychiatry, 113, 13091315.Google Scholar
McGuffin, P., Festenstein, H. & Murray, R. M. (1983) A family study of HLA antigens and other genetic markers in schizophrenia. Psychological Medicine, 13, 3143.CrossRefGoogle ScholarPubMed
McGuffin, P. & Katz, R. (1986) Nature, nurture and affective disorder. In The Biology of Affective Disorders (ed. Deakin, J. F. W.). London: Royal College of Psychiatrists, Gaskell Press.Google Scholar
Mendlewicz, J., Massart-Guidt, T., Wilmotte, J. & Fleiss, J. L. (1974) Blood groups in manic depressive illness and schizophrenia. Diseases of the Nervous System, 35, 3961.Google ScholarPubMed
Mendlewicz, J. & Rainer, J. D. (1977) Adoption study supporting genetic transmission in manic-depressive illness. Nature, 268, 726729.Google Scholar
Mendlewicz, J., Simon, P., Sevy, S. et al (1987) Polymorphic DNA marker and X chromosome and manic depression. The Lancet, ii, 12301232.Google Scholar
Morton, N. E. (1955) Sequential tests for the detection of linkage. American Journal of Human Genetics, 7, 277318.Google ScholarPubMed
Morton, N. E. (1956) The detection and estimation of linkage between the genes for elliptocytosis and Rh blood type. American Journal of Human Genetics, 8, 8096.Google Scholar
Morton, N. E. & MacLean, C. J. (1974) Analysis of familial resemblance – III. Complex segregation analysis of quantitative traits. American Journal of Human Genetics, 26, 489.Google Scholar
O'Rourke, D. H., McGuffin, P. & Reich, T. (1983) Genetic analysis of manic depressive illness. American Journal of Physical Anthropology, 62, 5159.CrossRefGoogle ScholarPubMed
Perris, C. (1966) A study of bipolar (manic depressive) and unipolar recurrent depressive psychoses. Acta Psychiatrica and Neuratogica Scandinavica, Suppl. 42.Google Scholar
Reich, T., Clayton, P. J. & Winokur, G. (1969) Family history studies v. the genetics of mania. American Journal of Psychiatry, 125, 13581369.Google Scholar
Reich, T., Cloninger, C. R., Wette, R. & James, J. (1979) The use of multiple thresholds and segregation analysis in analysing the phenotypic heterogeneity of multifactorial traits. Annals of Human Genetics, 42, 371.Google Scholar
Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977) Labelling dioxyribonuclin acid to high specific activity in vitro by nick translation with DNA polymerase. Journal of Molecular Biology, 113, 237251.Google Scholar
Risch, N. & Baron, M. (1982) X-linkage and genetic heterogeneity in bipolar related major affective illness: reanalysis of linkage data. Annals of Human Genetics, 46, 153166.Google Scholar
Shapiro, R. W., Ryder, W. P., Svejgaard, A. & Rafaelson, O. J. (1977) HLA antigens and manic depressive disorders: further evidence of non association. Psychological Medicine, 7, 387396.Google Scholar
Smith, H. O. & Wilcox, K. W. (1970) A restriction enzyme from Haemophilus influenza – I. Purification and general properties. Journal of Molecular Biology, 51, 379391.Google Scholar
Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503517.Google Scholar
Sturt, E. & McGuffin, P. (1985) Can linkage and marker association resolve the genetic aetiology of psychiatric disorders: review and argument. Psychological Medicine, 15, 455462.Google Scholar
Suarez, B. K. & Reich, T. (1984) HLA and major affective disorder. Archives of General Psychiatry, 41, 2227.Google Scholar
Targum, S. P., Gershon, E. S., Van Erdwegh, M. & Rogentine, N. (1979) Human leucocyte antigen system not closely linked or associated with bipolar manic depressive illness. Biological Psychiatry, 14, 615625.Google Scholar
Temin, H. M. & Mizutani, S. (1970) RNA dependent DNA polymerase in visions of Rous sarcoma virus. Nature, 226, 12111213.Google Scholar
Weitkamp, L. R., Stancer, H. C., Persad, E., Flood, C. & Guttormsen, S. (1981) Depressive disorders and HLA: a gene on chromosome 6 that can affect behaviour. New England Journal of Medicine, 305, 13011341.Google Scholar
Wender, P. H., Kety, S. S., Rosenthal, D., Schulsinger, F., Ortmann, J. & Lunde, I. (1986) Psychiatric disorders in the biological and adoptive families of adopted individual with affective disorder. Archives of General Psychiatry, 43, 923929.CrossRefGoogle Scholar
Wright, A. F., Crighton, D. N., Loudon, J. B., Morten, J. E. N. & Steel, C. M. (1984) B-adrenoceptor binding defects in cell lines from families with manic depressive disorder. Annals of Human Genetics, 48, 201214.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.