Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T07:22:07.641Z Has data issue: false hasContentIssue false

Treatment of Alzheimer's Disease

Molecular Pathology Versus Neurotransmitter-Based Therapy

Published online by Cambridge University Press:  02 January 2018

David M. Bowen*
Affiliation:
Miriam Marks Department of Neurochemistry, Institute of Neurology (Queen Square), 1 Wakefield Street, London WC1N 1PJ

Extract

Cortical inhibitory neurotransmitters, neuropeptides, dopamine and noradrenaline are probably either not selectively or not critically affected in AD. It is, however, likely that a key change is shrinkage or loss of corticocortical pyramidal neurones, which probably use glutamate as their transmitter. This depletion appears to be circumscribed and clinically relevant.

Type
Comment
Copyright
Copyright © Royal College of Psychiatrists, 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowen, D. M., Beyreuther, K., Cross, A. J., et al (1988) Group report. Cell injury: molecular biology and genetic basis. In Etiology of Dementia of Alzheimer's Type (eds A. S. Henderson & J. H. Henderson), pp. 165176. Chichester: John Wiley.Google Scholar
Caputo, C. B. & Salama, A. I. (1989) Authors' response to commentaries. Neurobiology of Aging, 10, 451462.CrossRefGoogle Scholar
Esiri, M. M., Pearson, R. C. A., Steele, J. E., et al (1990) A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 53, 161165.Google Scholar
Francis, P. T. & Bowen, D. M. (1989) Tacrine, a drug with therapeutic potential for dementia: post-mortem biochemical evidence. Canadian Journal of Neurological Science, 16, 504510.CrossRefGoogle ScholarPubMed
Greenamyre, J. T. & Young, A. B. (1989) Author's response to commentaries. Neurobiology of Aging, 10, 618620.CrossRefGoogle Scholar
Hood, W. F., Compton, R. P. & Monahan, J. B. (1989) d-Cycloserine: a ligand for the n-methyl-d-aspartate coupled glycine receptor has partial agonist characteristics. Neuroscience Letters, 98, 9195.Google Scholar
Kelley, M. & Kowall, N. (1989) Corticotropin-releasing factor immunoreactive neurons persist throughout the brain in Alzheimer's disease. Brain Research, 501, 392396.CrossRefGoogle ScholarPubMed
Lowe, S. L., Francis, P. T., Procter, A. W., et al (1988) Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer's disease. Brain, 111, 785799.Google Scholar
Lowe, S. L., Bowen, D. M. & Francis, P. T. (1990) Antemortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurones in Alzheimer's disease. Neuroscience (in press).Google Scholar
Martin, J. B., Beal, M. F., Mazurek, M., et al (1988) Some observations on the significance of neurotransmitter changes in Alzheimer's disease. Aging and the Brain (ed. R. D. Terry), pp. 129148. New York: Raven Press Google Scholar
McCabe, B. J. & Horn, G. (1988) Learning and memory; regional changes in n-methyl-d-aspartate receptors in the chick brain. Proceedings of the National Academy of Science (USA), 85, 28492855.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S., Mann, D. M. A., et al (1986) Alzheimer's disease: a correlative study. Journal of Neurology, Neurosurgery and Psychiatry, 49, 229237.Google Scholar
Peinado, J. M. & Mora, F. (1986) Glutamic acid as putative transmitter of the interhemispheric corticocortical connections in the rat. Journal of Neurochemistry, 47, 15981603.Google Scholar
Pericak-Vance, M. A., Yamaoka, L. H., Haynes, C. S., et al (1988) Genetic linkage studies in Alzheimer's disease families. Experimental Neurology, 102, 271279.CrossRefGoogle ScholarPubMed
Procter, A. W., Palmer, A. M., Francis, P. T., et al (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. Journal of Neurochemistry, 50, 790802.CrossRefGoogle ScholarPubMed
Procter, A. W., Wong, E. H. F., Stratmann, G. C., et al (1989) Reduced glycine stimulation of [3H] MK801 binding in Alzheimer's disease. Journal of Neurochemistry, 53, 698704.CrossRefGoogle ScholarPubMed
Reinikainen, K. J., Paljarvi, L., Huuskonen, M., et al (1988) A postmortem study of noradrenergic serotonergic and GABAergic neurones in Alzheimer's disease. Journal of the Neurological Sciences, 84, 101116.Google Scholar
Siesjo, B. K. & Bengtsson, F. (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression; a unifying hypothesis. Journal of Cerebral Blood Flow and Metabolism, 9, 127140.CrossRefGoogle ScholarPubMed
Sims, N. R., Bowden, D. M., Neary, D. et al (1983) Metabolic processes in Alzheimer's disease: adenine nucleotide content and production of 14CO2 from (U-14C)glucose in vitro in human neocortex. Journal of Neurochemistry, 41, 13291334.Google Scholar
Sims, N.R., Finegan, J. M., Blass, J. P., et al (1987) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Research, 436, 3038.CrossRefGoogle ScholarPubMed
Whalley, L. J. (1989) Drug treatments of dementia. British Journal of Psychiatry, 155, 595611.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.