Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T00:43:24.960Z Has data issue: false hasContentIssue false

Overexcitement and Disinhibition

Dynamic Neurotransmitter Interactions in Alcohol Withdrawal

Published online by Cambridge University Press:  02 January 2018

Paul Glue*
Affiliation:
Reckitt and Colman Psychopharmacology Unit, Department of Pharmacology, The Medical School, University Walk, Bristol BS8 1TD
David Nutt
Affiliation:
Reckitt and Colman Psychopharmacology Unit, Bristol
*
Correspondence

Abstract

In alcohol withdrawal, abnormalities occur in a number of neurotransmitter systems: there is reduced inhibitory function, and increased activity of excitatory systems. The former, indicated by reduced GABA and alpha-2-adrenoceptor activity, acts in conjunction with, and is exacerbated by, the latter, which itself may be due to the potentiation of NMDA activity by depletion of magnesium, and overactivity of catecholaminergic and CRF neurones. These dysfunctions produce immediate effects and may also contribute to the long-term changes in brain excitability by a kindling-like process. It is possible that early and active treatment may oppose this process. Present strategies for treatment of alcohol withdrawal enhance GABA and alpha-2 inhibitory, or reduce excitatory, mechanisms. Future possibilities include the use of CRF and/or NMDA antagonists.

Type
Review Article
Copyright
Copyright © Royal College of Psychiatrists, 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adinoff, B. (1987) Hypothalamic-pituitary-adrenal axis function in recently abstinent alcoholics. In Alcohol Withdrawal and Noradrenergic Function (Moderator: Linnoila, M.). Annals of Internal Medicine, 107, 875889.Google Scholar
AL-Damluji, S., Perry, L., Tomlin, S., et al (1987) Alpha-adrenergic stimulation of corticotropin secretion by a specific central mechanism in man. Neuroendocrinology, 45, 6876.CrossRefGoogle ScholarPubMed
Allan, A. M. & Harris, R. A. (1987) Involvement of neuronal chloride channels in ethanol intoxication, tolerance and dependence. In Recent Developments in Alcoholism, Vol. 5 (ed. M. Galanter), pp. 313325. New York: Plenum Press.CrossRefGoogle ScholarPubMed
Alonso, G., Szafarczyk, A., Balmefrezol, M., et al (1986) Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone and vasopressin in rats. Brain Research, 397, 297307.Google Scholar
Anderson, W. W., Swartzwelder, H. S. & Wilson, W. A. (1987) The NMDA antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis but not epileptiform bursting in the rat hippocampal slice. Journal of Neurophysiology, 57, 121.CrossRefGoogle Scholar
Annunziato, L., Amoroso, S., Di Renzo, G., et al (1983) Increased GH responsiveness to dopamine receptor stimulation in alcohol addicts during the late withdrawal syndrome. Life Sciences, 33, 26512655.Google Scholar
Araneda, R. & Bustos, G. (1989) Modulation of dendritic release of dopamine by N-mcthyl-aspartate receptors in rat substantia nigra. Journal of Neurochemistry, 52, 962970.Google Scholar
Ballenger, J. C. & Post, R. M. (1978) Kindling as a model for alcohol withdrawal syndromes. British Journal of Psychiatry, 133, 114.CrossRefGoogle Scholar
Banna, N. R. (1969) Potentiation of cutaneous inhibition by ethanol. Experientia, 25, 619620.CrossRefGoogle Scholar
Bjorkqvist, S. E. (1975) Clonidine in alcohol withdrawal. Acta Psychiatrica Scandinavica, 52, 256263.Google Scholar
Bone, G. H. A., Majchrowicz, E., Martin, P. R., et al (1989) A comparison of calcium antagonists and diazepam in reducing alcohol withdrawal tremors. Psychopharmacology, 99, 386388.Google Scholar
Borg, S., Kvande, H. & Sedvall, G. (1981) Central norepinephrine metabolism during alcohol intoxication in addicts and healthy volunteers. Science, 213, 11351137.Google Scholar
Brown, M. E., Anton, R. F., Malcolm, R., et al (1988) Alcohol detoxification and withdrawal seizures: clinical support for a kindling hypothesis. Biological Psychiatry, 23, 507514.Google Scholar
Brown, M. R., Fisher, L. A., Rivier, J., et al (1982) Corticotropin-releasing factor: effects on the sympathetic nervous system and oxygen consumption. Life Sciences, 30, 207210.Google Scholar
Brunnino, J., Mumforo, J. P. & Keaney, F. P. (1986) Lofexidine in alcohol withdrawal states. Alcohol and Alcoholism, 21, 167170.Google Scholar
Coffman, J. A. & Petty, F. (1985) Plasma GABA levels in chronic alcoholics. American Journal of Psychiatry, 142, 12041205.Google ScholarPubMed
Cole, B. J. & Koob, G. F. (1988) Propranolol antagonises the enhanced conditioned fear produced by corticotropin releasing factor. Journal of Pharmacology and Experimental Therapeutics, 247, 902910.Google Scholar
Collinoridoe, G. L. & Bliss, T. V. P. (1987) NMDA receptors - their role in long-term potentiation. Trends in Neurological Science, 10, 288293.Google Scholar
Cott, J. A., Carlsson, A., Engel, J., et al (1976) Suppression of ethanol-induced locomotor stimulation by GABA-like drugs. Naunyn-Schmiedeberg's Archives of Pharmacology, 295, 203209.Google Scholar
Cowen, P. J. & Nutt, D. J. (1982) Abstinence syndromes after withdrawal of tranquilising drugs: a common neurochemical mechanism? Lancet, ii, 360362.Google Scholar
Croucher, M. J., Collins, J. F. & Meldrum, B. S. (1982) Anticonvulsant action of excitatory amino acid antagonists. Science, 216, 899901.CrossRefGoogle ScholarPubMed
Daus, A. T., Freeman, W. M., Wilson, J., et al (1985) Clinical experience with 781 cases of alcoholism evaluated and treated on an inpatient basis by various methods. International Journal of Addiction, 20, 643650.Google Scholar
Dave, J. R., Eiden, L. E., Karanian, J. W., et al (1986) Ethanol exposure decreases pituitary corticotropin-releasing factor binding, adenylate cyclase activity, proopiomelanocortin biosynthesis, and plasma beta-endorphin levels in the rat. Endocrinology, 118, 280286.Google Scholar
Davidoff, R. S. (1973) Alcohol and presynaptic inhibition in isolated spinal cord preparation. Archives of Neurology, 28, 6063.CrossRefGoogle ScholarPubMed
Dolin, S. I. & Little, H. J. (1990) Calcium antagonists during ethanol administration. Journal of Pharmacology and Experimental Therapeutics (in press).Google Scholar
Dolin, S. I., Little, H. J., Hudspith, M., et al (1987) Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology, 26, 275279.Google Scholar
Durand, D. & Carlen, P. L. (1984) Impairment of long-term potentiation in rat hippocampus following chronic ethanol treatment. Brain Research, 308, 325332.CrossRefGoogle ScholarPubMed
Ehlers, C. L. & Chaplin, R. I. (1987) Chronic ethanol exposure potentiates the locomotor-activating effects of corticotropin-releasing factor (CRF) in rats. Regulatory Peptides, 19, 345353.CrossRefGoogle ScholarPubMed
Ehlers, C. L., Henriksen, S., Wang, M., et al (1983) Corticotropin-releasing factor increases brain excitability and convulsive seizures in the rat. Brain Research, 278, 332336.Google Scholar
Engel, J. & Liljeqvist, S. (1976) The effect of long-term ethanol treatment on the sensitivity of dopamine receptors in the nucleus accumbens. Psychopharmacology, 49, 253257.CrossRefGoogle ScholarPubMed
Fadda, F., Mosca, E., Meloni, R., et al (1985) Suppression by progabide of ethanol withdrawal syndrome in rats. European Journal of Pharmacology, 109, 321325.Google Scholar
Feuerlein, W. & Reiser, E. (1986) Parameters affecting the course and results of delirium tremens treatment. Acta Psychiatrica Scandinavica (suppl. 329), 120123.Google Scholar
Flink, E. B. (1986) Magnesium deficiency in alcoholism. Alcoholism: Clinical and Experimental Research, 10, 590594.Google Scholar
Flink, E. B., McCollister, R., Prasad, A. S., et al (1957) Evidence for clinical magnesium deficiency. Annals of Internal Medicine, 47, 956968.Google Scholar
Franklin, C. L. & Gruol, D. L. (1987) Acute ethanol alters the firing pattern and glutamate response of cerebellar Purkinje neurons in culture. Brain Research, 416, 205218.Google Scholar
Freund, G. (1980) Benzodiazepine receptor loss in brains of mice after chronic alcohol consumption. Life Sciences, 27, 987992.Google Scholar
Frye, G. D. & Breese, G. R. (1982) GABAergic modulation of ethanol-induced motor impairment. Journal of Pharmacology and Experimental Therapeutics, 223, 750756.Google Scholar
Gallimberti, L., Canton, G., Gentile, N., et al (1989) Gamma-hydroxybutyric acid for treatment of alcohol withdrawal syndrome. Lancet, ii, 787789.Google Scholar
Garthwaite, G. & Garthwaite, J. (1986) Amino acid toxicity: intracellular sites of calcium accumulation associated with the onset of irreversible damage to rat cerebellar neurones in vitro. Neuroscience Letters, 71, 5358.Google Scholar
Glue, P. & Nutt, D. J. (1987) Clonidine in alcohol withdrawal: a pilot study of differential symptom responses following i.v. clonidine. Alcohol and Alcoholism, 22, 161166.Google Scholar
Glue, P., Sellman, J. D., Nicholl, M. G., et al (1989) Studies of alpha-2–adrenoceptor function in abstinent alcoholics. British Journal of Addiction, 84, 97102.CrossRefGoogle ScholarPubMed
Golbert, T. M., Sanz, C. J., Rose, H. D., et al (1967) Comparative evaluation of treatments of alcohol withdrawal syndromes. Journal of the American Medical Association, 201, 113116.Google Scholar
Hawley, R. J., Major, L. F., Schulman, E., et al (1981) Cerebrospinal fluid cyclic nucleotides and GABA do not change in alcohol withdrawal. Life Sciences, 28, 295299.Google Scholar
Hawley, R. J., Major, L. F., Schulman, E., et al (1985) Cerebrospinal fluid 3-methoxy-4-hydroxyphenylglycol and norepinephrine levels in alcohol withdrawal. Archives of General Psychiatry, 42, 10561062.Google Scholar
Heaton, F. W., Pyrah, L. N., Beresford, C. C., et al (1962) Hypomagnesaemia in chronic alcoholism. Lancet, ii, 802805.Google Scholar
Herron, C. E., Lester, R. A. J., Coan, E. J., et al (1985a) Intracellular demonstration of an N-methyl-D-aspartate receptor mediated component of synaptic transmission in the rat hippocampus. Neuroscience Letters, 60, 1923.Google Scholar
Herron, C. E., Williamson, R. & Collingridge, G. L. (1985b) A selective N-methyl-D-aspartate antagonist depresses epileptiform activity in rat hippocampal slices. Neuroscience Letters, 61, 255260.Google Scholar
Heuser, I., Von Bardeleben, U., Boll, E., et al (1988) Response of ACTH and Cortisol to human corticotropin-releasing hormone after short-term abstention from alcohol abuse. Biological Psychiatry, 24, 316321.Google Scholar
Hoffman, P. L., Moses, F., Hudspith, M., et al (1989a) Ethanol: potent and selective inhibitor of NMDA-stimulated cyclic GMP production. Research Society on Alcohol Abstracts, Colorado, 312 (abstr. 43).Google Scholar
Hoffman, P. L., Rabe, C. S., Moses, F., et al (1989b) N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. Journal of Neurochemistry, 52, 19371940.Google Scholar
Holsboer, F., Von Bardeleben, U., Buller, R., et al (1987) Stimulation response to corticotropin-releasing hormone (CRH) in patients with depression, alcoholism and panic disorder. Hormonal and Metabolic Research (suppl. 16), 8088.Google Scholar
Holzbach, E. & Buhler, K. E. (1978) Die behandlung des delirium tremens mit haldol. Nervenartz, 49, 405409.Google Scholar
Jones, S. M., Snell, L. D. & Johnson, K. M. (1987) Phencyclidinc selectively inhibits N-methyl-D-aspartate-induced hippocampal (3H)norepinephrine release. Journal of Pharmacology and Experimental Therapeutics, 240, 492497.Google ScholarPubMed
Kaim, S. C., Klett, C. J. & Rothfield, B. (1969) Treatment of the acute alcohol withdrawal syndrome: a comparison of four drugs. American Journal of Psychiatry, 125, 16401646.CrossRefGoogle ScholarPubMed
Kanzow, W. T. (1986) The clinical stages of alcoholic delirium and their therapeutic significance. Acta Psychiatrica Scandinavica (suppl. 329), 124128.CrossRefGoogle Scholar
Kitazawa, S., Shioda, S. & Nakai, Y. (1987) Catecholaminergic innervation of neurons containing corticotropin-releasing factor in the paraventricular nucleus of the rat hypothalamus. Acta Anatomica, 129, 337343.CrossRefGoogle ScholarPubMed
Kobinger, W. (1984) Alpha-2–adrenoceptors in cardiovascular regulation of norepinephrine. In Frontiers of Clinical Science, Vol. 2 (eds M. G. Ziegler & C. R. Lake), pp. 307326. Baltimore: Williams and Wilkins.Google Scholar
Koob, G. F. & Bloom, F. E. (1985) Corticotropin-releasing factor and behaviour. Federation Proceedings, 44, 259263.Google Scholar
Koppi, S., Eberhardt, G., Haller, R., et al (1987) Calcium channel blocking agent in the treatment of acute alcohol withdrawal – caroverine versus meprobamate in a randomised double blind study. Neuropsychobiology, 17, 4952.Google Scholar
Kramp, P., Ronsted, P. & Hansen, T. (1979) Barbital and diazepam plasma levels during treatment of delirium tremens. Acta Psychiatrica Scandinavica, 59, 263275.Google Scholar
Krystal, H. (1959) The physiological basis of the treatment of delirium tremens. American Journal of Psychiatry, 116, 137147.Google Scholar
Lalies, M., Middlemiss, D. N. & Ransom, R. (1988) Stereoselective antagonism of NMDA-stimulated noradrenaline release from rat hippocampal slices by MK-801. Neuroscience Letters, 91, 339342.Google Scholar
Liljeqvist, S. (1978) Changes in the sensitivity of dopamine receptors in the nucleus accumbens and in the striatum induced by chronic ethanol administration. Acta Pharmacologica et Toxicologica, 43, 1928.Google Scholar
Liljeqvist, S. & Engel, J. (1982) Effects of GABAergic agonists and antagonists on various ethanol-induced behavioural changes. Psychopharmacology, 78, 7175.Google Scholar
Linnoila, M. (1987) Alcohol withdrawal and noradrenergic function. Annals of Internal Medicine, 107, 875889.Google Scholar
Lishman, W. A. (1987) Brain damage in alcoholism: current concepts. Acta Medica Scandinavica (suppl. 717), 517.Google Scholar
Lister, R. G. & Karanian, J. W. (1987) RO 15–4513 induces seizures in DBA/2 mice undergoing alcohol withdrawal. Alcohol, 4, 409411.Google Scholar
Lister, R. G. & Nutt, D. J. (1987) Is RO 15–4513 a specific alcohol antagonist? Trends in Neurological Science, 10, 223225.CrossRefGoogle Scholar
Little, H. J., Dolin, S. J. & Halsey, M. J. (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome in rats. Life Sciences, 39, 20592065.CrossRefGoogle Scholar
Littleton, J. (1989) Alcohol intoxication and physical dependence: a molecular mystery tour. British Journal of Addiction, 84, 267276.Google Scholar
Littleton, J. & Little, H. J. (1988) Dihydropyridine-sensitive Ca channels in brain are involved in the central nervous system hyper-excitability associated with alcohol withdrawal states. Annals of the New York Academy of Science, 552, 199202.Google Scholar
Lovinger, D. M., White, G. & Weight, F. F. (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science, 243, 17211724.Google Scholar
Lynch, M. A. & Littleton, J. M. (1983) Possible association of alcohol tolerance with increased synaptic Ca sensitivity. Nature, 303, 175177.Google Scholar
Marley, R. J. & Wehner, J. M. (1987) GABA enhancement of flunitrazepam binding in mice selectively bred for differential sensitivity to ethanol. Alcohol and Drug Research, 7, 2532.Google Scholar
Martz, A., Deitrich, R. A. & Harris, R. A. (1983) Behavioural evidence for the involvement of gamma-aminobutyric acid in the actions of ethanol. European Journal of Pharmacology, 89, 5362.Google Scholar
Meldrum, B., Anelzark, G. & Trimble, M. (1975) Drugs modifying dopaminergic activity and behaviour, the EEG, and epilepsy in papio papio . European Journal of Pharmacology, 32, 203213.Google Scholar
McNamara, J. O., Russell, R. D., Rigsbee, L., et al (1988) Anticonvulsant and antiepileptogenic actions of MK-801 in the kindling and electroshock models. Neuropharmacology, 27, 563568.Google Scholar
Nesteros, J. M. (1980) Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science, 209, 708710.CrossRefGoogle Scholar
Nowak, L., Bregestovski, P., Ascher, P., et at (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462465.Google Scholar
Nutt, D. J. & Glue, P. (1986) Monoamines and alcohol. British Journal of Addiction, 81, 327338.Google Scholar
Nutt, D. J., Adinoff, B., Ravitz, B., et al (1988a) Cerebrospinal fluid studies in alcoholics and violent offenders. Australian Drug and Alcohol Review, 7, 105108.CrossRefGoogle Scholar
Nutt, D. J., Glue, P., Molyneux, S., et al (1988b) Alpha-2-adrenoceptor activity in alcohol withdrawal: a pilot study of the effects of i.v. clonidine in alcoholics and normals. Alcoholism: Clinical and Experimental Research, 12, 1418.Google Scholar
Olney, J. W. (1984) Excitotoxins: an overview. In Excitotoxins (eds K. Fuxe, P. J. Roberts & R. Schwarcz), p. 8296. London: Macmillan.Google Scholar
Palsson, A. (1986) The efficacy of early chlormethiazole medication in the prevention of delirium tremens. A retrospective study of the outcome of different treatment strategies at the Helsingborg psychiatric clinics, 1975–1980. Acta Psychiatrica Scandinavica (suppl. 329), 140145.Google Scholar
Potter, J. F., Bannan, L. T. & Beevers, D. G. (1984) The effect of a non-selective lipophilic beta-blocker on the blood pressure and noradrenaline, vasopressin, Cortisol and renin release during alcohol withdrawal. Clinical Experiments in Hypertension - Theory and Practice, A6, 11471160.Google Scholar
Racine, R. J., Milgram, N. W. & Hafner, S. (1983) Long-term potentiation phenomena in the rat limbic forebrain. Brain Research, 260, 217231.Google Scholar
Rastogi, S. K., Thyagarajan, R., Clothier, J., et al (1986) The effect of chronic treatment of ethanol on benzodiazepine and picrotoxin sites on the GABA-receptor complex in regions of the brain of the rat. Neuropharmacology, 25, 11791184.Google Scholar
Risher-Flowers, D., Adinoff, B., Ravitz, B., et al (1988) Circadian rhythms of Cortisol during alcohol withdrawal. Advances in Alcohol and Substance Abuse, 7, 3741.Google Scholar
Rivier, C., Bruhn, T. & Vale, W. (1984) Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF). Journal of Pharmacology and Experimental Therapeutics, 229, 127131.Google Scholar
Robinson, B. J., Robinson, G. M., Maling, T. J. B., et al (1989) Is clonidine useful in the treatment of alcohol withdrawal? Alcoholism: Clinical and Experimental Research, 13, 9598.Google Scholar
Rottenberg, H. (1985) Alcohol modulation of benzodiazepine receptors. Alcohol, 2, 203207.Google Scholar
Sapolsky, R. M. & Pulsinelli, W. A. (1985) Glucocorticoids potentiate ischaemic injury to neurons: therapeutic implications. Science, 229, 13971400.Google Scholar
Seilicovich, A., Duvilanski, B., Gonzales, N. N., et al (1985) The effect of acute ethanol administration on GABA receptor binding in cerebellum and hypothalamus. European Journal of Pharmacology, 111, 365369.Google Scholar
Sellers, E. M., Naranjo, C. A., Harrison, M., et al (1983) Diazepam loading: simplified treatment of alcohol withdrawal. Clinical Pharmacology and Therapeutics, 34, 822826.Google Scholar
Schwarcz, R. & Meldrum, B. (1985) Excitatory aminoacid antagonists provide a therapeutic approach to neurological disorders. Lancet, ii, 140143.Google Scholar
Schwarcz, R., Collins, J. F. & Parks, D. A. (1982) α-Amino-phosphonocarboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus. Neuroscience Letters, 33, 8590.Google Scholar
Slater, N. T., Stelzer, A. & Galvan, M. (1985) Kindling-like stimulus patterns induce epileptiform discharges in the guinea pig in vitro hippocampus. Neuroscience Letters, 60, 2531.Google Scholar
Snyder, S. H. (1980) Phencyclidine. Nature, 285, 355356.CrossRefGoogle ScholarPubMed
Stelzer, A., Slater, N. T. & Bruggencate, G. (1987) Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature, 326, 698701.Google Scholar
Suzdak, P. D., Schwartz, R. D., Skolnick, P., et al (1986a) Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proceedings of the National Academy of Sciences, 83, 40714075.Google Scholar
Suzdak, P. D., Glowa, J. R., Crawley, J. N., et al (1986b) A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science, 234, 12431247.Google Scholar
Swanson, L. W. (1976) The locus coeruleus: a cytoarchitectonic, golgi and immunohistochemical study in the albino rat. Brain Research, 110, 3956.Google Scholar
Taylor, K. M. & Laverty, R. (1969) The effect of chlordiazepoxide, diazepam and nitrazepam on catecholamine metabolism in regions of the rat brain. European Journal of Pharmacology, 8, 296301.Google Scholar
Thomas, D. W. & Freedman, D. X. (1964) Treatment of the alcohol withdrawal syndrome. Journal of the American Medical Association, 188, 316318.Google Scholar
Thompson, W. L., Johnson, A. D. & Maddrey, W. L. (1975) Diazepam and paraldehyde for treatment of severe delirium tremens. Annals of Internal Medicine, 82, 175180.Google Scholar
Ticku, M. K. & Davis, W. C. (1981) Evidence that ethanol and pentobarbital enhance 3H-diazepam binding at the benzodiazepine-GABA receptor-ionophore complex indirectly. European Journal of Pharmacology, 71, 521522.Google Scholar
Ticku, M. K. & Rastogi, S. K. (1986) Barbiturate-sensitive sites on the benzodiazepine-GABA receptor-ionophore complex. In Molecular and Cellular Mechanisms of Anaesthetics (eds S. H. Roth & K. W. Miller), pp. 178188. New York: Plenum Press.Google Scholar
Ticku, M. K., Burch, T. P. & Davis, W. C. (1983) The interactions of ethanol with the benzodiazepine-GABA receptor-ionophore complex. Pharmacology Biochemistry and Behaviour, 18, 1518.Google Scholar
Ticku, M. K., Lowrimore, P. & Lehoullier, P. (1986) Ethanol enhances GABA-induced 36-C1-influx in primary spinal cord cultured neurons. Brain Research Bulletin, 17, 123126.Google Scholar
Tran, V. T., Snyder, S. H., Major, L. F., et al (1981) GABA receptors are increased in the brains of alcoholics. Annals of Neurology, 9, 289292.CrossRefGoogle ScholarPubMed
Vale, W., Speiss, J., Rivier, C., et al (1981) Characterization of a 41–residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213, 13941397.Google Scholar
Valentino, R. J., Foote, S. L. & Aston-Jones, G. (1983) Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Research, 270, 363367.Google Scholar
Valimaki, M., Pelkonen, R., Harkonen, M., et al (1984) Hormonal changes in noncirrhotic male alcoholics during ethanol withdrawal. Alcohol and Alcoholism, 19, 235242.Google Scholar
Vezzani, A., Wu, H-Q., Montena, E., et al (1988) Role of the N-methyl-D-aspartate-type receptors in the development and maintenance of hippocampal kindling in rats. Neuroscience Letters, 87, 6368.Google Scholar
Victor, M. (1966) Treatment of alcoholic intoxication and the withdrawal syndrome. Psychosomatic Medicine, 28, 636650.Google Scholar
Victor, M. & Adams, R. D. (1953) The effects of alcohol on the nervous system. Research Publications of the Association for Nervous and Mental Diseases, 32, 526573.Google Scholar
Walinder, J., Balldin, J., Bokstrom, K., et al (1981) Clonidine suppression of the alcohol withdrawal syndrome. Drug and Alcohol Dependence, 8, 345348.Google Scholar
Walker, D. W., Barnes, D. E., Zornetzer, S. F., et al (1980) Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats. Science, 209, 711713.Google Scholar
Watkins, J. C. & Evans, R. H. (1981) Excitatory amino acid transmitters. Annual Reviews in Pharmacology and Toxicology, 21, 165204.Google Scholar
Weiss, S. R. B., Post, R. M., Gold, P. W., et al (1986) CRF-induced seizures and behaviour: interaction with amygdala kindling. Brain Research, 372, 345351.Google Scholar
Whittington, M. A. & Little, H. J. (1988) Nitrendipine prevents the ethanol withdrawal syndrome when administered chronically with ethanol prior to withdrawal. British Journal of Pharmacology, 94, 385.Google Scholar
Whyte, K. F., Addis, G. J., Whitesmith, R., et al (1987) Adrenergic control of plasma magnesium in man. Clinical Science, 72, 135138.Google Scholar
Wilkins, A. J., Jenkins, W. J. & Steiner, J. A. (1983) Efficacy of clonidine in the treatment of the alcohol withdrawal syndrome. Psychopharmacology, 81, 7880.Google Scholar
Wolfe, S. M. & Victor, M. (1969) The relationship of hypomagnesaemia and alkalosis to alcohol withdrawal symptoms. Annals of the New York Academy of Science, 162, 973984.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.