Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T08:45:24.624Z Has data issue: false hasContentIssue false

Evidence for a Pseudo-autosomal Locus for Schizophrenia Using the Method of Affected Sibling Pairs

Published online by Cambridge University Press:  02 January 2018

J. Collinge
Affiliation:
Division of Psychiatry, Clinical Research Centre, Harrow
L. E. Delisi
Affiliation:
Department of Psychiatry, State University of New York at Stonybrook, New York, USA
A. Boccio
Affiliation:
Department of Psychiatry, State University of New York at Stonybrook, New York, USA
E. C. Johnstone
Affiliation:
Academic Department of Psychiatry, Royal Edinburgh Hospital, Morningside Park, Edinburgh
A. Lane
Affiliation:
Cluain Mhuire Family Centre, Newtownpark Avenue, Blackrock, Co. Dublin, Ireland
C. Larkin
Affiliation:
Cluain Mhuire Family Centre, Newtownpark Avenue, Blackrock, Co. Dublin, Ireland
M. Leach
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
R. Lofthouse
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
F. Owen
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
M. Poulter
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
T. Shah
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
C. Walsh
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
T. J. Crow*
Affiliation:
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex
*
Division of Psychiatry, Clinical Research Centre, Watford Road, Harrow, Middlesex HA1 3UJ

Abstract

A susceptibility locus for schizophrenia in the ‘pseudo-autosomal’ region has been proposed on the basis of the reported excess of sex-chromosome aneuploidies (e.g. XXY and XXX) among patients with schizophrenia and the finding that schizophrenic sib-pairs are more often of the same than of the opposite sex. This hypothesis has been tested in 83 sibships with two or more siblings fulfilling Research Diagnostic Criteria for schizophrenia or schizoaffective disorder. Alleles at the pseudo-autosomal telomeric locus DXYS14, which is unlinked with sex, were analysed using the method of affected sib-pairs. Affected sibs shared alleles at DXYS14 more frequently than expected by random Mendelian assortment, supporting genetic linkage between DXYS14 and schizophrenia.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1991 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angst, J., Scharfetter, C. & Stassen, H. (1983) Classification of schizoaffective patients by multi–dimensional scaling and cluster analysis. Psychiatria Clinica, 16, 254264.Google Scholar
Aschauer, H. N., Aschauer–Treiber, C., Isenberg, K. E., et al (1990) No evidence for linkage between chromosome 5 markers and schizophrenia. Human Heredity, 40, 109115.Google Scholar
Bassett, A. S., McGillivray, B. C., Jones, B.D., et al (1988) Partial trisomy chromosome 5 co–segregating with schizophrenia. Lancet, i, 799801.CrossRefGoogle Scholar
Brown, W. R. A. (1988) A physical map of the human pseudo–autosomal region. EMBO Journal, 7, 23772385.Google Scholar
Burgoyne, P. S. (1982) Genetic homology and crossing–over in X and Y chromosomes of mammals. Human Genetics, 61, 8590.CrossRefGoogle Scholar
Collinge, J., Boccio, A., DeLisi, L.E., et al (1989) Evidence for a pseudo–autosomal locus for schizophrenia. Cytogenetics and Cell Genetics, 51, 958.Google Scholar
Cooke, H. J., Brown, W. R. A. & Rappold, G. A. (1985) Hyper–variable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature, 317, 687692.Google Scholar
Crow, T. J. (1988) Sex chromosomes and psychosis. The case for a pseudoautosomal locus. British Journal of Psychiatry, 153, 675683.Google Scholar
Crow, T. J., DeLisi, L. E. & Johnstone, E. C. (1989) Concordance by sex in sibling pairs with schizophrenia is paternally inherited: evidence for a pseudo–autosomal locus. British Journal of Psychiatry, 155, 9297.Google Scholar
Crow, T. J., DeLisi, L. E. & Johnstone, E. C. (1990) In reply … a locus closer to the telomere? British Journal of Psychiatry, 156, 416420.Google Scholar
Crowe, R. R., Black, D. W., Andreasen, N. C., et al (1990) The Iowa multiplex family study of schizophrenia: Linkage analyses on chromosome 5. European Archives of Psychiatry and Neurological Sciences, 293, 290293.Google Scholar
Curtis, D. & Curling, H. (1990) Unsound methodology in investigating a pseudo–autosomal locus in schizophrenia. British Journal of Psychiatry, 156, 415416.CrossRefGoogle Scholar
DeLisi, L. E., Goldin, L. E., Maxwell, M. E., et al (1987) A clinical study of siblings with schizophrenia. Archives of General Psychiatry, 44, 891896.Google Scholar
Endicott, J. & Spitzer, R. L. (1978) A diagnostic interview: the schedule for affective disorders and schizophrenia. Archives of General Psychiatry, 35, 837844.CrossRefGoogle ScholarPubMed
Gershon, E. S. & Goldin, L. R. (1987) The outlook for linkage research in psychiatric disorders. Journal of Psychiatric Research, 21, 541550.Google Scholar
Gershon, E. S., DeLisi, L. E., Hamovit, J., et al (1988) A controlled family study of chronic psychoses: schizophrenia and schizoaffective disorder. Archives of General Psychiatry, 45, 328336.Google Scholar
Goodfellow, P. J., Darling, S. M., Thomas, N. S., et al (1986) A pseudo–autosomal gene in man. Science, 234, 740743.Google Scholar
Gottesman, I. I. & Shields, J. (1982) Schizophrenia: The Epigenetic Puzzle. New York: Cambridge University Press.Google Scholar
Gough, N. M., Gearing, D. P., Nicola, N. A., et al (1990) Localisation of the human GM–CSF receptor gene to the X-Y pseudoautosomal region. Nature, 345, 734736.CrossRefGoogle Scholar
Green, J. R. & Woodrow, J. C. (1977) Sibling method for detecting HLA linked genes in diseases. Tissue Antigens, 9, 3135.Google Scholar
Ingraham, L. J. & Kety, S. S. (1988) Schizophrenia spectrum disorders. In Handbook of Schizophrenia, Vol.3. Nosology, Epidemiology and Genetics of Schizophrenia (eds M. T. Tsuang & J. C. Simpson), pp. 117137. Amsterdam: Elsevier.Google Scholar
Kaufman, C. A., Gilliam, T. C., DeLisi, L. E., et al (1989) Physical mapping and linkage analysis of a susceptibility locus for schizophrenia on chromosome 5q. Schizophrenia Bulletin, 15, 441452.Google Scholar
Kendler, K. S. (1988) The genetics of schizophrenia: an overview. In Handbook of Schizophrenia. Vol. 3. Nosology, Epidemiology and Genetics of Schizophrenia (eds M. T. Tsuang & J. C. Simpson), pp. 437462. Amsterdam: Elsevier.Google Scholar
Kennedy, J. L., Giuffra, L. A., Moises, H. W., et al (1988) Evidence against linkage of schizophrenia to markers on chromosome 5 in a Northern Swedish pedigree. Nature, 336, 167170.Google Scholar
Kety, S. S. (1983) Mental illness in the biological and adoptive relatives of schizophrenic adoptees: findings relevant to genetic and environmental factors in etiology. American Journal of Psychiatry, 140, 720727.Google Scholar
McGuffin, P., Sargeant, M., Hetti, G., et al (1990) Exclusion of a schizophrenia susceptibility gene from chromosome 5q1–q13 region: new data and a re-analysis of previous reports. American Journal of Human Genetics, 47, 524535.Google Scholar
Niikawa, N., Kuroki, Y., Kajii, T., et al (1988) Kabuki make–up (Niikawa-Kuroki) syndrome: a study of 62 patients. American Journal of Medical Genetics, 31, 565589.Google Scholar
Ott, J. (1990) Invited editorial. Cutting a gordian knot in the linkage analysis of complex human traits. American Journal of Human Genetics, 46, 219221.Google Scholar
Page, D. C., Bieker, K., Brown, L. G., et al (1987) Linkage, physical mapping and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics, 1, 243256.Google Scholar
Petit, C., Levilliers, J. & Weissenbach, J. (1988) Physical mapping of the human pseudoautosomal region: comparison with genetic linkage map. EMBO Journal, 7, 23692376.Google Scholar
Rappold, G. A. & Lehrach, H. (1988) A long range restriction map of the pseudo–autosomal region by partial digest PFGE analysis from the telomere. Nucleic Acids Research, 16, 53615377.Google Scholar
Risch, N. (1990) Linkage strategies for genetically complex traits I. Multilocus models. American Journal of Human Genetics, 46, 222228.Google ScholarPubMed
Rouyer, F., Simmler, M. C., Johnsson, C., et al (1986) A gradient of sex linkage in the pseudo–autosomal region of the human sex chromosomes. Nature, 319, 291295.Google Scholar
St Clair, D. M., Blackwood, D., Muir, W., et al (1989) No linkage of chromosome 5q11–q13 markers to schizophrenia in Scottish families. Nature, 339, 305309.Google Scholar
Sherrington, R., Brynjolfsson, J., Pertursson, H., et al (1988) Localisation of a susceptibility locus for schizophrenia on chromosome 5. Nature, 336, 164167.Google Scholar
Simmler, M. C., Rouyer, F., Vergnaud, G., et al (1985) Pseudo–autosomal DNA sequences in the pairing region of the human sex chromosomes. Nature, 317, 692697.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978) Research Diagnostic Criteria for a Selected Group of Functional Disorders (3rd edn). New York: New York State Psychiatric Institute.Google Scholar
Sturt, E. & Shur, E. (1985) Sex concordance for schizophrenia in proband–relative pairs. British Journal of Psychiatry, 147, 4447.Google Scholar
Suarez, B. K. & van Eerdewech, P. (1984) A comparison of three affected sib–pair methods to detect HLA-linked disease susceptibility genes. American Journal of Human Genetics, 18, 135146.Google Scholar
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974) Description and Classification of Psychiatric Symptoms. Cambridge: Cambridge University Press.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.