Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T12:57:39.995Z Has data issue: false hasContentIssue false

Reduced in vivo binding to the serotonin transporter in the cerebral cortex of MDMA (‘ecstasy’) users

Published online by Cambridge University Press:  03 January 2018

David M. Semple*
Affiliation:
University Department of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF
Klaus P. Ebmeier
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF
Michael F. Glabus
Affiliation:
Brain Metabolism Unit and Department of Medical Physics, Royal Infirmary of Edinburgh
Ronan E. O'Carroll
Affiliation:
Department of Psychology, University of Stirling, Stirling FK9 4LA
Eve C. Johnstone
Affiliation:
University Department of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF
*
Professor K. P. Ebmeier, MRC Brain Metabolism Unit, Department of Psychiatry, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF

Abstract

Background

The use of MDMA (‘ecstasy’) is common among young people in Western countries. Animal models of MDMA toxicity suggest a loss of serotonergic neurons, and potentially implicate it in the development of significant psychiatric morbidity in humans.

Aims

To test whether long-term use of MDMA can produce abnormalities in cerebral serotonin, but not dopamine, transporter binding measured by single photon emission computed tomography (SPECT)

Method

Ten male regular ecstasy users and 10 well-matched controls recruited from the same community sources participated in SPECT with the serotonin transporter (SEPT) ligand [123I]-CIT. Dopamine transporter binding was determined from scans acquired 23 hours after injection of the tracer.

Results

Ecstasy users showed a cortical reduction of SERT binding, particularly prominent in primary sensory-motor cortex, with normal dopamine transporter binding in lenticular nuclei.

Conclusions

This cross-sectional association study provides suggestive evidence for specific, at least temporary, serotonergic neurotoxicity of MDMA in humans.

Type
Papers
Copyright
Copyright © 1999 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Declaration of interest

Funded by the Wellcome Trust and the Medical Research Council.

References

Army Individual last Battery (1944) Manual of Directions and Scoring. Washington. DC: War Department. Adjutant General's Office.Google Scholar
Benton, A. L. & des Hamsher, K. (1976) Multilingual Aphasia Examination. Iowa, IA: University of Iowa.Google Scholar
Delis, D. C. Kramer, J. H., Kaplan, E., et al (1987) California Verbal Learning Test (CVLT) Manual. New York: Psychological Corporation.Google Scholar
Ebmeiar, K. P., Dougall, N. J., Austin, M.-P., et al (1991) The split-dose technique for the study of psychological and pharmacological activation with the cerebral blood flow marker exametazime and single photon emission computed tomography (SPECT): reproducibility and rater reliability. International Journal of Methods in Psychiatric Research, 1, 2738.Google Scholar
Eysenck, S. G. B., Eysenck, H. J. & Barret, P. (1985) A revised version of the psychoticism scale. Personality and Individual Differences, 6, 2129.CrossRefGoogle Scholar
Fischer, C., Hatzidimitriou, G., Wlos, J., et al (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/–)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’). Journal of Neuroscience, 15, 54765485.CrossRefGoogle Scholar
Fujita, M., Takatoku, M., Mataba, Y., et al (1996) Differential kinetics of [123I]beta-CIT binding to dopamine and serotonin transporters. European Journal of Nuclear Medicine, 23, 431436.CrossRefGoogle ScholarPubMed
Kuikka, J. T., Tiihonen, J., Bergström, K. A., et al (1995) Imaging of serotonin and dopamine transporters in the living human brain. European Journal of Nuclear Medicine, 22, 346350.CrossRefGoogle ScholarPubMed
Laruelle, M., Baldwin, R. M., Malison, R. T., et al (1993) SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synopse, 13, 295309.CrossRefGoogle ScholarPubMed
McCann, U. D. & Ricaurte, G. A. (1991) Lasting neuropsychiatrie sequelae of (+)–3,4-methylenedioxymethamphetamine (‘ecstasy’) in recreational users. Journal of Clinical Psychopharmacology, II, 302305.Google Scholar
McCann, U. D., Szabo, Z., Scheffel, U., et al (1998) Positron emission tomographic evidence of toxic effect of MDMA (‘ecstasy’) on brain serotonin neurons in human beings. Lancet, 352, 14331437.CrossRefGoogle ScholarPubMed
Nelson, H. & Willison, J. (1991) National Adult Reading Test (2nd edn). Windsor: NFER–Nelson.Google Scholar
Pirker, W., Asenbaum, S., Kasper, S., et al (1995) Beta-CIT SPECT demonstrates blockade of 5HT-uptake sites by citalopram in the human brain in vivo . Journal of Neural Transmission, General Section, 100, 247256.CrossRefGoogle ScholarPubMed
Price, L. P., Ricaurte, G. A., Krystal, J. H., et al (1989) Neuroendocrine and mood response to L-tryptophan in 3,4-methylenedioxymethamphetamine (MDMA) users. Archives of General Psychiatry, 46, 2022.CrossRefGoogle ScholarPubMed
Ricaurte, G. A., De Lanney, L. E., Irwin, I., et al (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Research, 446, 165168.CrossRefGoogle ScholarPubMed
Ricaurte, G. A., Finnegan, K. T., Irwin, I., et al (1990) Aminergic metabolite in cerebrospinal fluid of humans previously exposed to MDMA: preliminary observations. Annals of the New York Academy of Sciences, 600, 699710.CrossRefGoogle ScholarPubMed
Ricaurte, G. A., Martello, A. L., Katz, J. L., et al (1992) Lasting effects of (+,–)-3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in non-human primates: neurochemical observations. Journal of Pharmacology and Experimental Therapeutics, 261, 616621.Google Scholar
Sahakian, B. J. & Owen, A. M. (1992) Computerised assessment in neuropsychiatry using CANTAB: discussion paper. Journal of the Royal Society of Medicine, 85, 399402.Google ScholarPubMed
Scheffel, U., Szabo, Z., Mathews, W. B., et al (1996) Fenfluramine-induced loss of serotonin transporters in baboon brain visualised with PET. Synapse, 24, 395398.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Scheffel, U., Szabo, Z., Mathews, W. B., et al (1998) In vivo detection of short- and long-term MDMA neurotoxicity – a positron emission tomography study in the living baboon brain. Synapse, 29, 183192.3.0.CO;2-3>CrossRefGoogle Scholar
Talairach, J. & Tournoux, P. (1988) A Coplanar Stereotaxic Atlas of a Human Brain. Stuttgart: Thieme.Google Scholar
Trenerry, M. R., Crosson, B., DeBoer, J., et al (1988) STROOP Neuropsychological Screening Test Manual. Florida: Psychological Assessment Resources.Google Scholar
Wechsler, D. (1987) Wechsler Memory Scale – Revised. The Psychological Corporation. New York: Harcourt Brace Jovanovich.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.