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  Abstract
  BackgroundThe neurocognitive basis of auditory verbal hallucinations is
unclear.

AimsTo investigate whether people with a history of such hallucinations would
misattribute their own speech as external and show differential
activation in brain areas implicated in hallucinations compared with
people without such hallucinations.

MethodParticipants underwent functional magnetic resonance imaging (fMRI) while
listening to pre-recorded words. The source (self/non-self) and acoustic
quality (undistorted/distorted) were varied across trials. Participants
indicated whether the speech they heard was their own or that of another
person. Twenty people with schizophrenia (auditory verbal hallucinations
n=10, no hallucinations n=10) and
healthy controls (n=11) were tested.

ResultsThe hallucinator group made more external misattributions and showed
altered activation in the superior temporal gyrus and anterior cingulate
compared with both other groups.

ConclusionsThe misidentification of self-generated speech in patients with auditory
verbal hallucinations is associated with functional abnormalities in the
anterior cingulate and left temporal cortex. This may be related to
impairment in the explicit evaluation of ambiguous auditory verbal
stimuli.
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 Auditory verbal hallucinations are a cardinal feature of schizophrenia but
their neurocognitive basis is unclear. Theoretical accounts proposed that such
hallucinations result from a breakdown in the monitoring of the intention to
generate inner speech, through a loss of the ‘efference copy’ associated with
the generation of verbal material. This efference copy serves to inform an
internal monitor of forthcoming action and may thus help to distinguish
self-generated from externally generated verbal material (Reference Blakemore, Wolpert and FrithBlakemore et al, 2002). In the absence of
this signal, inner speech may thus be misidentified as ‘alien’ and perceived as
externally generated voices (Reference FeinbergFeinberg,
1978; Reference Frith and DoneFrith & Done,
1988). Hallucinations have therefore been conceptualised as resulting
from a breakdown in the systems monitoring the current intention to make
actions (Reference Frith and DoneFrith & Done, 1988).

 However, monitoring can also occur at the level of the conscious evaluation of
the verbal output (Reference LeveltLevelt, 1983) when
speakers hear their own voice. Impairment at this level may also lead to the
erroneous misattribution of self-generated speech. When patients with
schizophrenia who are prone to auditory verbal hallucinations speak and hear an
acoustically distorted version of their own voice they tend to misidentify
their own speech as being that of somebody else (Reference Johns and McGuireJohns & McGuire, 1999; Reference Fu, Vythelingum and AndrewFu et al, 2001; Reference Johns, Rossell and FrithJohns et al, 2001). Although this
impairment is consistent with a loss of efference copy, it could equally result
from a problem with the conscious evaluation of auditory verbal feedback (Reference Allen, Johns and FuAllen et al, 2004).

 The purpose of our study was to use functional magnetic resonance imaging
(fMRI) to examine the brain regions involved in the conscious appraisal of
speech in people with schizophrenia who were and were not prone to auditory
verbal hallucinations. The subjective experience of these hallucinations in
schizophrenia is associated with activation in the inferior frontal, anterior
cingulate and temporal cortex (Reference McGuire, Shah and MurrayMcGuire
et al, 1993; Reference Shergill, Bullmore and SimmonsShergill et al, 2000b
). Furthermore, the processing of verbal material in people who are
prone to such hallucinations has been associated with differential engagement
of these regions relative to people with schizophrenia who do not experience
hallucinations and controls (Reference McGuire, Silbersweig and WrightMcGuire
et al, 1995; Reference Shergill, Brammer and FukudaShergill et al, 2003) particularly, in the temporal
cortex (Reference Fu, Vythelingum and AndrewFu et al,
2001). We tested the hypothesis that in people with auditory verbal
hallucinations the appraisal of speech would be associated with the
differential engagement of temporal, prefrontal and anterior cingulate
cortices. More specifically, we tested the prediction that external
misattributions in people with these hallucinations would be associated with
altered activation of the temporal cortices.




 METHOD


 Participants

 All participants were right-handed men who spoke English as their first
language and had no history of hearing problems. The study had local
research ethics committee approval and all participants gave informed
consent.


 Control group

 A control group of 11 healthy volunteers was recruited from the local
community through advertisements. Applicants with a history of medical or
psychiatric disorder, a drug or alcohol use problem, a family history of
psychiatric disorder, or who were receiving medication were excluded.
Their mean age was 28 years and their mean IQ, estimated with the
National Adult Reading Test (NART; Reference Nelson and O'ConnellNelson & O'Connell, 1978), was 115 (see Table 1).





Table 1 Group demographic and clinical characteristics.
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	Variable	Control group (n=11) Mean (s.d.)	Non-hallucinator group (n=10) Mean
(s.d.)	Hallucinator group (n=10) Mean (s.d.)	Group comparisons
	Age, years	29.21 (4.26)	34.78 (11.4)	34.83 (6.88)	NS
	Education, years	14.34 (3.2)	12.3 (1.64)	11.7 (1.41)	NS
	Premorbid IQ score	115 (5.78)	99 (8.56)	100 (7.42)	
F=16.9, P<0.001
	Age at first onset, years		21.31 (5.63)	22.5 (5.13)	NS
	Duration of illness, years		16.32 (12.42)	12.33 (9.35)	NS
	SAPS scores				
	    AVH		0	4.47 (0.74)	
U=0, P<0.001
	    Other hallucinations		0	0.82 (0.32)	NS
	    Delusions		4.15 (1.37)	4.41 (0.78)	NS
	    Formal thought disorder		1.57 (1.15)	0.95 (0.42)	NS
	    Bizarre behaviour		0.73	0.55	NS
	    Total score1
		6.38 (2.82)	10.21 (1.40)	
U=10.5, P=0.004
	SANS scores				
	    Total score2
		6.75 (5.51)	6.70 (3.82)	NS
	    Attentional problems		1.83 (1.25)	1.5 (1.05)	NS
	Antipsychotic medication				
	    Typical:atypical, n:n
		3:7	4:6	χ2=0.11,
P=0.73
	Depression (CDS score)		5.51 (6.77)	8.00 (7.22)	NS







 Patient groups

 All patients met DSM–IV criteria for schizophrenia (American Psychiatric Association, 1994) and were
recruited through the South London and Maudsley National Health Service
Trust. Clinical teams were systematically contacted with a request to
identify patients with schizophrenia who either had prominent and current
auditory verbal hallucinations, or had no current or previous history of
such hallucinations. This information was corroborated by careful review
of the patients’ clinical records. Potentially eligible patients were
then approached by the investigators and assessed using the Scale for the
Assessment of Positive Symptoms (SAPS; Reference AndreasenAndreasen, 1984a
), the Scale for the Assessment of Negative Symptoms (SANS; Reference AndreasenAndreasen, 1984b
), the Calgary Depression Scale (Reference Addington, Addington and SchisselAddington et al, 1990) and the NART.

 The hallucinator group (n=10) comprised patients who
scored ≥3 on the SAPS auditory hallucination item (clear evidence of
voices and that they had occurred in the past week). All of these
patients had a documented history of auditory verbal hallucinations.
Patients in this group were also experiencing other positive symptoms,
particularly delusions, and had low levels of negative symptoms (see
Table 1). Nine of this group
were in hospital at the time of testing and one was receiving out-patient
treatment. None reported hallucinations during the fMRI scanning
procedure.

 The non-hallucinator group (n=10) was composed of
patients who were not experiencing auditory verbal hallucinations at the
time of testing and had no previous history of such hallucinations. This
was assessed by detailed inspection of the patients’ notes, and
consultation with clinical staff. Patients with any history of such
hallucinations were excluded. Patients in this group had positive
symptoms other than hallucinations – particularly delusions (see Table 1). Eight of these patients
were in hospital at the time of testing and two were receiving
out-patient treatment.

 Exclusion criteria for both patient groups included the presence of an
Axis II DSM–IV diagnosis or another Axis I diagnosis, a neurological
disorder or a history of substance or alcohol misuse. Patients with an IQ
below 80 were also excluded. All patients had been receiving regular
doses of antipsychotic medication for at least 1 month prior to testing.
Potential participants who reported a history of hearing problems were
excluded. The healthy volunteers had a higher premorbid IQ than either
patient group; the IQ score was therefore included as a covariate in the
between-group analyses.






 Stimuli


 Word lists

 Eighty adjectives applicable to people were used (e.g. ‘perfect’,
‘tall’). All the words were monosyllabic or bisyllabic with a
Thorndike–Lorge frequency greater than 50 (Reference Gilhooly and LogieGilhooly & Logie, 1980), and were selected from
lists used in a previous study (Reference McGuire, Silbersweig and FrithMcGuire
et al, 1996). The emotional valence of
these words had previously been rated by 40 healthy volunteers as either
negative, positive or neutral (Reference Johns, Rossell and FrithJohns
et al, 2001). Thus the 80 words used
consisted of 27 positive, 27 negative and 26 neutral words. The sets of
words presented in each condition were balanced for the number of
syllables (i.e. equal amounts of one and two syllable words), word
frequency and valence (equal amounts of positive, negative and neutral
words).




 Auditory stimuli

 The participants’ speech was recorded on Cool Edit 2000 for Windows,
which allowed the recordings to be normalised, pitch-shifted and edited
into 80 individual wave files. A pitch shift of –4 semitones was used
because it made the speaker's voice more difficult to recognise without
making the speech incomprehensible. A male researcher who was unknown to
the participants recorded the words for the non-self condition (40 words
in total). A researcher was chosen who used English received
pronunciation.






 Design

 A factorial design was used, with two levels for sources of speech (self,
alien) and two levels of distortion (0, –4 semitones). There were 20 words
in each of four speech conditions presented in the fMRI experiment (20 self
undistorted, 20 self distorted, 20 alien undistorted, 20 alien distorted).
The experimental manipulations were source of speech (self, alien) and
distortion level (0, –4 semitones). Words were presented in a non-self
(alien) voice as well as in the participant's voice, to test whether any
response bias was specific to self-generated words.




 Procedure

 Patients underwent symptom assessment using the SAPS and SANS either the day
before or on the day of the fMRI scan. Approximately 1 hour before scanning
all participants were presented with a list of 80 words on a piece of paper
and asked to read them aloud in a clear voice at a rate of approximately one
word per second. Participants read all 80 words, even though half would
subsequently be presented to them in another person's voice; this was to
ensure that participants could not make judgements based on source
information during the task. They were not asked to remember the words.
Their speech was recorded by a computer. The experimenter then edited the
recordings so that 40 of the words were replaced by a recording of the same
word spoken in another person's voice, and 40 were pitch-shifted. The
subsets of words that were replaced and pitch-shifted respectively were
pre-designated (allocated so that the subsets subsets were matched for word
length, frequency and valence). The same subsets of words were used for all
participants. Once participants had been placed in the scanner a
standardised instruction script was read out to them. Participants were told
to listen carefully to each word and make a decision regarding the source of
the speech; they were able to register a response of either ‘self’, ‘unsure’
or ‘other’ by means of a button box. The option to register an unsure
response was included to avoid participants having to make a forced choice
between a self or alien source even when they were unsure.




 Image acquisition

 Images were acquired in a 1.5 T Magnet (Signa LX; GE, Milwaukee, Wisconsin,
USA) using a compressed gradient echo (Reference Edmister, Talavage and LeddenEdmister et al, 1999), echoplanar image
acquisition (Reference Hall, Haggard and AkeroydHall et al,
1999), with a time to repetition (TR) of 1.2 s (0.8 s of silence),
flip angle 80°, time to echo (TE) 40 ms, 64 × 64 pixels, field of view 200
mm, slice thickness 7 mm and interslice gap 0.7 mm (voxel size 3.125 mm ×
3.125 mm × 7 mm); 482 image volumes were acquired in two runs of 6 min each.
Of the 482 images 80 were experimental events (20 in each speech condition)
and the remainder were rest (i.e. no auditory stimulus was presented). Each
whole-brain volume consisted of 14 axial slices parallel to the
anterior–posterior intercommissural line.

 Stimuli were presented in random order in an event-related design, with a
variable interstimulus interval (4–12 s) following a non-gaussian random
distribution (Poisson function peaking at 7 s) individually set for each
condition (Reference DaleDale, 1999). Image
acquisition and stimulus presentation were synchronised by a
transistor–transistor logic (TTL) pulse from the scanner to the computer
used to present the stimuli and record the behaviour. The compressed
acquisition permitted presentation of each word in in the the absence of
acoustic scanner noise. Each response time was locked to the beginning of
the word presentation.




 Image analysis

 Data were analysed with software developed at the Institute of Psychiatry,
using a non-parametric approach. Data were first processed (Reference Bullmore, Brammer and Rabe-HeskethBullmore et al,
1999a
) to minimise motion-related artefacts. Responses to the experimental
paradigms were then detected by first convolving each component of the
experimental design with each of two gamma variate functions (peak responses
at 4 s and 8 s respectively). The best fit between the weighted sum of these
convolutions and the time series at each voxel was computed using the
constrained blood oxygen level dependent (BOLD) effect model suggested by
Friman et al (Reference Friman, Borga and Lundberg2003). Following computation of the model fit, a goodness-of-fit
statistic was computed. This consisted of the ratio of the sum of squares of
deviations from the mean image intensity (over the whole time series) due to
the model to the sum of squares of deviations due to the residuals (SSQ
ratio). Following computation of the observed SSQ ratio at each voxel, the
data are permuted by the wavelet-based method described and extensively
characterised by Bullmore et al (Reference Bullmore, Long and Suckling2001). Using this distribution it is possible to
calculate the critical value of SSQ ratio needed to threshold the maps at
any desired type I error rate. The detection of activated voxels is extended
from voxel to cluster level using the method described in detail by Bullmore
et al (Reference Bullmore, Suckling and Overmeyer1999b
). Events in the four experimental conditions (self, self distorted,
alien and alien distorted speech) were contrasted against rest volumes for
all participants.




 Group mapping

 The observed and permuted SSQ ratio maps for each individual, as well as the
BOLD effect size maps, were transformed into the standard space of Talairach
& Tournoux (Reference Talairach and Tournoux1988) using the
two-stage warping procedure described in detail by Brammer et
al (Reference Brammer, Bullmore and Simmons1997). Group
activation maps were computed by determining the median SSQ ratio at each
voxel (over all individuals) in the observed and permuted data maps (medians
are used to minimise outlier effects). Cluster-level maps were thresholded
at less than one expected type I error cluster per brain. The computation of
a standardised measure of effect SSQ ratio at the individual level, followed
by analysis of the median SSQ ratio maps over all individuals, treats intra-
and inter-individual variations in effect separately, constituting a
mixed-effect approach to analysis which is deemed desirable in fMRI.




 Repeated-measures contrasts

 The analysis was performed using the brain activation data from each
participant under each condition. The permutation-based analysis was
performed by first determining the median change across all participants and
between participant treatments. The treatment labels were then permuted and
the median change computed. The use of median statistics renders this
analysis robust to outlier data in individual cases. The data were then
analysed using a non-parametric repeated-measures analysis of covariance
(Reference Bullmore, Suckling and OvermeyerBullmore et al,
1999b
). The experimental conditions were defined according to the source
of the speech (self or alien) and the level of distortion (undistorted or
distorted). The data were analysed using a series of non-parametric
factorial analysis of variance (ANOVA). We examined the main effect of
speech source, distortion and their interactions with group. The effect of
the emotional valence of the words on the fMRI data was not examined because
it had no significant effect on behavioural results. To test for the
interaction between the source of speech, level of distortion and group we
examined the main effect of distortion on self speech and the interaction
with group and the main effect of distortion on alien speech and its
interaction with group. To examine the neural correlates of the
misattribution of speech, we analysed the main effect of the accuracy of
attribution (correct responses or misattributions errors). Events were
categorised as correct or misattributions according to each participant's
behavioural response. Trials associated with unsure responses were excluded
from this analysis. Maps of the difference in the effect size of the BOLD
response associated with correct and incorrect attributions were generated.
In this particular analysis the effect size statistic was used because the
numbers of trials associated with correct and incorrect responses were not
equal across conditions. The effect size statistic is relatively insensitive
to differences in the number of responses per condition. Use of the effect
size statistic also avoids the possibility that differences in BOLD response
could reflect changes in the denominator of the statistic (noise) rather
than signal, as can occur when using standardised statistics such as
F, t or SSQ ratio. All between-group contrasts were
covaried for NART premorbid IQ scores (using XBAM version 3.4; http://www.brainmap.co.uk/xbam.htm).






 RESULTS

 The demographic and clinical characteristics of the participants are shown in
Table 1.


 Behavioural data

 Analysis of variance was conducted for misattribution errors, defined as
misidentifications of the source of the speech (i.e. an ‘other’ response
when hearing their own speech or a ‘self’ response when hearing alien
speech), excluding ‘unsure’ responses (Fig.
1). The data were analysed using an ANOVA for repeated
measures.


 Analysis of variance

 For misattribution errors the main effects for source
(F=6.00, d.f.=1,28, P=0.02), distortion
(F=12.36, d.f.=1,28, P=0.002) and
group (F=6.18, d.f.=2,28, P=0.006) were
all significant. As there was a significant between-group variance in
NART scores this variable was used as a covariate. After the inclusion of
this covariate the between-subjects effect for group remained significant
(F=4.67, d.f.=2,28, P=0.02). There
was a significant interaction between the effects of source of speech and
group (F=3.50, d.f.=2,28, P=0.04). A
post hoc one-way ANOVA revealed a significant group
difference in the self speech condition (F=11.24,
d.f.=2,30, P<0.001). A Bonferroni
t-test showed that those in the hallucinator group made
significantly more misattribution errors than the participants in both
the non-hallucinator (P=0.001) and control groups
(P=0.001). There was no significant group difference
in either of the alien speech conditions (for alien undistorted speech,
F=0.09, d.f.=2,29, P=0.91; for alien
distorted speech, F=0.21, d.f.=2,29,
P=0.13). The interaction between source, distortion and
group was nonsignificant (F=1.16, d.f.=2,28,
P=0.32). All main effects and interactions involving
valence were also non-significant.






 Imaging data: task-related activation independent of condition

 Performance of the task across all conditions and all groups (independent of
performance) was associated with bilateral activation in the inferior
frontal, anterior cingulate and superior temporal gyri, the brain-stem and
the cerebellum.




 Source of speech and group interaction

 The main effect of source of speech is presented in Table 2. There was a significant interaction between
the source of speech and group in the left superior temporal gyrus (Fig. 2(a,b)). Examination of the SSQ
ratios from this region revealed that both the control group and the
non-hallucinator group showed greater activation when processing alien
speech compared with self speech. However, in the hallucinator group the
response in this area was similar for alien and for self speech.





Table 2 Main effects and group interactions for source of speech and level
of distortion; all contrasts are reported at a clusterwise
threshold of P=0.01 (less than one false positive
cluster).
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	Cerebral region	Side	Coordinates1
	Cluster Size	BA
			
x
	
y
	
z
	
	Source of speech						
	    Self > alien						
	        Inferior frontal gyrus	L	-29	26	-2	50	47
	        Anterior cingulate	R	4	26	15	28	24
	        Insula	L	-36	19	4	9	13
	    Alien > self						
	        Lingual gyrus	R	0	-78	-13	36	18
	        Middle frontal gyrus	R	43	26	15	13	46
	        Cuneus	L	-11	-78	15	10	18
	        Fusiform gyrus	L	-33	-13	8	9	20
	        Superior temporal gyrus	R	-30	-7	9	7	21
	Distortion						
	    Undistorted > distorted						
	        Middle temporal gyrus	L	-50	-29	-2	84	21
	        Lingual gyrus	R	1	-78	-12	83	18
	        Middle frontal gyrus	R	43	15	20	16	46
	    Distorted > undistorted						
	        Inferior frontal gyrus	R	26	-2	10	89	47
	        Cingulate gyrus	R	11	15	31	37	32
	        Insula	R	32	22	4	15	13
	        Inferior frontal gyrus	L	-43	15	-7	35	47
	Interactions						
	    Source × group						
	        Superior temporal gyrus	L	-44	-22	-2	35	22
	    Distortion × group						
	        Cingulate gyrus	L	-4	26	31	66	32







[image: ]




Fig. 1 Mean number of misattribution error trials according to condition
and group.







 Distortion and group interaction

 The main effect of distortion is shown Table 2. There was an interaction between the effects of
distortion and group (Fig.
2a,c
). In both the control group and the non-hallucinator group
processing distorted relative to undistorted speech was associated with
activation in the cingulate gyrus. In the hallucinator group the response in
this region was unaffected by acoustic distortion (Table 2).




 Effects of distortion on self and alien speech and group
interactions

 There were significant interactions between the effect of distortion on self
speech and group in the left anterior cingulate and the right superior
temporal gyrus (Fig. 3a,b
; Table 3). In the cingulate
gyrus both the control group and the non-hallucinator group showed greater
activation when processing distorted v. undistorted self
speech, whereas the opposite was true in the hallucinator group. In the
right superior temporal gyrus the hallucinator group showed greater
activation for distorted v. undistorted self speech, the
converse was evident in the non-hallucinator group, and distortion had
little effect on activation in the control group. The group interaction for
the effect of distortion on alien speech was restricted to the right
anterior cingulate gyrus (Table 3).
In this region both the control group and the non-hallucinator group showed
greater activation when processing alien speech that was distorted as
opposed to undistorted. However, in the hallucinator group distortion had no
effect on the level of activation in this region.





Table 3 Main effects and group interactions for the effects of distortion
on both self and alien speech and analysis of response accuracy;
all contrasts are reported at a clusterwise threshold of
P=0.01 (less than one false positive
cluster)
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	Cerebral region	Side	Coordinates	Cluster size	BA
			
x
	
y
	
z
		
	Effect of distortion on self speech
× group						
	    Cingulate gyrus	L	-4	22	26	37	32
	    Superior temporal gyrus	R	51	-18	4	54	22
	Effect of distortion on alien speech
× group						
	    Cingulate gyrus	R	4	30	26	58	32
	Response analysis						
	    Correct > misattribution						
	        Middle temporal gyrus	L	-50	-30	-7	175	21
	        Middle temporal gyrus	R	-51	-13	0	124	21
	    Misattributions >
correct			Null result		
	    Group interaction (all
speech)						
	        Middle temporal gyrus	L	-50	-30	-2	123	21
	    Group interaction in the self
speech condition						
	        Middle temporal gyrus	L	-50	-30	-2	133	21
	    Group interaction in the alien
speech condition			Null result		







 Main effect and group interaction for correct v.
misattributed responses

 For all participants correct responses (regardless of speech source or the
level of distortion) were associated with greater activation in the middle
temporal gyrus bilaterally relative to misattributions. No area was more
activated in association with misattributions than with correct responses.
There was an interaction between response accuracy (correct/misattribution)
and group in the left middle temporal gyrus. In both the control and
non-hallucinator groups there was greater activation for correct responses
(correct identification of either self or alien speech) than for
misattributions, whereas there was no difference in the hallucinator group.
In order to test our specific hypothesis about activation being associated
with external (self to alien) misattributions, the analysis was then
restricted to the self speech condition (i.e. the correct identification of
self speech v. its misattribution to an external source).
Again there was an interaction with group in the left middle temporal gyrus,
with the same patterns of activation as described above (Fig. 3c
, Table 3). When the effect
of response accuracy was examined in the alien speech condition alone there
was no significant interaction with group.






 DISCUSSION

 Our study used fMRI to study the neural correlates of making self/non-self
judgements about the source of pre-recorded speech in the presence and absence
of acoustic distortion. We examined the effects of speech source and of
distortion in patients with auditory verbal hallucinations, patients without
such hallucinations and controls. In addition, by using event-related fMRI we
were able to categorise the neural response to each word according to the
accuracy of the self/non-self attribution and thus examine the correlates of
external misattributions.

 A tendency for patients with hallucinations to misattribute their own distorted
speech to an alien source was first demonstrated using a paradigm in which
participants overtly articulated single words and heard what they said in real
time (Reference Johns and McGuireJohns & McGuire, 1999). We
used the same paradigm, except that participants heard the words but did not
speak. As in a recent study using this modified version of the task, we found
that patients with auditory verbal hallucinations also made more external
misattributions than both the non-hallucinator group and the control group
(Reference Allen, Johns and FuAllen et al,
2004), particularly when their speech was distorted (although this did
not achieve statistical significance in our study). This may reflect a lack of
power, as the number of trials per condition was limited by the practicalities
of the fMRI experiment.

 Overall, the task activated a network of inferior frontal, temporal and
cingulate regions as well as areas in the brain-stem and cerebellum. This is
consistent with data from previous studies of voice processing (Reference Binder, Frost and HammekeBinder et al, 2000) and a
study of the same task in healthy volunteers (Reference Allen, Amaro and FuAllen et al, 2005). Within this network, across all
three groups there were regions that were more activated when participants
processed self-generated speech compared with alien speech and vice
versa. However, the hallucinator group differed from both controls
and the non-hallucinator group in the effect of the source of the speech on
activation in the left superior temporal gyrus. In this region both the
reference groups showed increased activation when listening to alien speech
compared with self speech, whereas the activation in the hallucinator group was
relatively unaffected by the source of the speech. Activation during the task
was also influenced by the acoustic distortion of the stimuli. Again, there
were significant differences in the effects of distortion between the
hallucinators and the other two groups. In the control and non-hallucinator
groups distortion was associated with the engagement of the anterior cingulate
gyrus, but this effect was absent in the hallucinator group.

 The above data suggest that when patients who were prone to hallucinations
evaluated speech, the left temporal cortex and the anterior cingulate were
differentially responsive to its source and its acoustic quality respectively
relative to the reference groups. These findings are consistent with our
hypothesis and with data from previous studies that have implicated these
regions in schizophrenia (Reference Shapleske, Rossell and WoodruffShapleske
et al, 1999; Reference Carter, MacDonald and RossCarter et al, 2001) and the pathophysiology of
auditory verbal hallucinations (Reference Suzuki, Yuasa and MinabeSuzuki
et al, 1993; Reference Shergill, Brammer and WilliamsShergill et al, 2000a
).

 The group differences in the effects of source on the left superior temporal
activation suggest that this region is normally sensitive to whether speech has
been self or externally generated, but that this sensitivity might be impaired
in patients who are prone to auditory verbal hallucinations. Interestingly, a
difference in BOLD signal for the perception of one's own actions, compared
with the perception of the actions of another, has been reported in pre-motor
areas (Reference Grezes, Frith and PassinghamGrezes et al,
2004). This may be due to a closer match between stimulated and
perceived action for self-generated actions. Although our study involved the
auditory modality it is possible that a similar mechanism applies to the
perception of self speech and the speech of another. Functional differences in
processing in the secondary auditory cortex are of particular interest, because
an impairment in the ability to distinguish self-generated from external speech
is fundamental to most cognitive models of auditory hallucinations (Reference Frith and DoneFrith & Done, 1988; Reference Seal, Aleman and McGuireSeal et al, 2004).
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Fig. 2 Brain activation maps (a) and SSQ plots for (b) the interaction
between the effects of source of speech and group in the left superior
temporal gyrus and (c) the interaction between the effect of
distortion and group in the left ACC (P=0.01<1
false positive cluster. (ACC, anterior cingulate cortex; SSQ, sum of
squares; STG, superior temporal gyrus).




 The group differences in the effects of distortion on activation in the dorsal
part of the anterior cingulate cortex occurred regardless of the source of
speech. The caudal portion of the anterior cingulate is implicated in directed
attention, response monitoring and selection (Reference Corbetta, Miezin and DobmeyerCorbetta et al, 1991; Reference Carter, Braver and BarchCarter et al, 1998). Its activation in
association with distortion may thus have reflected increased engagement of
these processes in response to stimuli that become more difficult to perceive
as a result of the pitch shift. The failure of patients with hallucinations to
activate the anterior cingulate in the presence of distortion may thus reflect
impairments in these cognitive processes. However, when the effect of
distortion was restricted to self-generated speech an interaction with group
was observed in the right superior temporal gyrus. In this region patients with
hallucinations showed increased activation to distorted self-generated speech.
The basis of the increased activation is unclear, but it could reflect altered
modulation from other regions that are themselves differentially engaged in
this group during this condition, such as the anterior cingulate. Furthermore,
several studies have reported that patients with schizophrenia demonstrated
relatively greater activation of the right temporal gyrus cortex (compared with
the left) when listening to normal speech, and this may reflect a disruption in
left lateralisation of language function seen in right-handed individuals
(Reference Woodruff, Wright and BullmoreWoodruff et al,
1997).

 Information on the neural correlates of misattributions themselves was obtained
by comparing activity associated with misattributions and correct responses.
When participants in the hallucinator group made external misattributions (when
processing their own speech) these were associated with activation in the left
middle temporal gyrus, whereas in the control and non-hallucinator groups there
was a greater left temporal response when participants correctly identified
their own speech. This distinction between the groups was specific to external
misattributions, as there were no group difference in activation when
participants misidentified alien speech as their own (internal
misattributions).
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Fig. 3 (a) Brain activation map for the interaction between the effects of
distortion on self speech and group (P=0.01, <1
false positive cluster). (b) SSQ plots for group interactions in the
superior temporal gyrus and anterior cingulate gyrus; (c) brain
activation map for group interactions with accuracy of response in the
self speech condition in the left middle temporal gyrus
(P=0.01; <1 false positive cluster); in the
control and non-hallucinator groups misattributions were associated
with less activation than correct responses, but the converse was true
in the hallucinator group; (d) percentage signal change plots for
group × accuracy interaction in the left superior temporal gyrus (SSQ,
sum of squares).




 Both the behavioural and neuroimaging results of our study are similar to those
reported using a version of the task that involved participants articulating
the words aloud (Reference McGuire, Silbersweig and FrithMcGuire et
al, 1996; Reference Fu, Vythelingum and AndrewFu et
al, 2001). Thus, in both cases, patients with
hallucinations tended to make external misattributions when processing their
own distorted speech, and this misattribution was associated with activation of
the temporal cortex relative to the correct recognition of self-generated
speech. The overall similarity of the results despite the absence of an
efference copy component in this study suggests that the differences between
the hallucinator groups and the other groups might be related to impairment
with the evaluation of auditory verbal material, rather than defective
corollary discharge. For example, patients with auditory verbal hallucinations
usually have delusions, and delusions are associated with abnormalities of
reasoning manifested as a tendency to ‘jump to conclusions’ (Reference Garety, Hemsley and WessleyGarety et al, 1991).
Indeed, recent behavioural work suggests that misattribution errors on verbal
self-monitoring tasks may be related to delusions rather than to hallucinations
(Reference Johns, Gregg and AllenJohns et al,
2006). However, this finding was not replicated in our study.

 The study has some limitations. Although it focused on how biased judgements
might contribute to the experience of externality, it does not explain how the
events that are being judged occur in the first place. Contemporary models of
hallucinations propose that they arise through the combination of the
generation of anomalous experiences and problems in the appraisal of these
experiences (Reference Seal, Aleman and McGuireSeal et al,
2004; Reference Ditman and KuperbergDitman & Kuperberg,
2005) The biased judgement of sensory material could also contribute
to other symptoms, such as delusions: in this case faulty judgements might lead
to the misinterpretation of external events such as other people's behaviour.
The coincidence of auditory hallucinations and delusions in schizophrenia is
consistent with these symptoms sharing cognitive mechanisms. Second, it is
possible that attentional problems may contribute to the tendency to make
misattribution errors. The patient groups did not differ on a measure of SANS
attentional problems; however, a more rigorous assessment of attentional
impairments would have helped to exclude this possibility. The attenuated
anterior cingulate response observed in the hallucinator group may reflect
problems in these domains. Furthermore, there are strong reciprocal connections
between the anterior cingulate and temporal cortex (Reference Petrides and PandyaPetrides & Pandya, 1988). It is possible that the
superior temporal gyrus response seen in the hallucinator group is associated
with altered ‘top down’ modulation of this region by the anterior cingulate
(Reference Fletcher, McKenna and FristonFletcher et al,
1999). Although the causation is speculative, it is possible that
impaired anterior cingulate modulation of the temporal cortices is associated
with making faulty source judgements about perceived speech. The functional
integration between the cingulate and temporal cortices could be tested in
future work examining the effective connectivity between regions and how this
altered in patients with hallucinations.

 In summary, external misattributions of speech in patients with hallucinations
can occur independently of any self-monitoring deficit, suggesting that
hallucinations may be related to problems with the conscious evaluation of
verbal material rather than the breakdown of an ‘efferent copy’. This
impairment was associated with the abnormal engagement of the temporal cortex
along with the anterior cingulate. Although the study involved the evaluation
of external rather than inner speech (which is more relevant to verbal
hallucinations), it is possible that the same mechanisms are used to appraise
internal and external speech.
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 Table 1 Group demographic and clinical characteristics.
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 Table 2 Main effects and group interactions for source of speech and level of distortion; all contrasts are reported at a clusterwise threshold of P=0.01 (less than one false positive cluster).
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 Fig. 1 Mean number of misattribution error trials according to condition and group.
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 Table 3 Main effects and group interactions for the effects of distortion on both self and alien speech and analysis of response accuracy; all contrasts are reported at a clusterwise threshold of P=0.01 (less than one false positive cluster)
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 Fig. 2 Brain activation maps (a) and SSQ plots for (b) the interaction between the effects of source of speech and group in the left superior temporal gyrus and (c) the interaction between the effect of distortion and group in the left ACC (P=0.01<1 false positive cluster. (ACC, anterior cingulate cortex; SSQ, sum of squares; STG, superior temporal gyrus).
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 Fig. 3 (a) Brain activation map for the interaction between the effects of distortion on self speech and group (P=0.01, <1 false positive cluster). (b) SSQ plots for group interactions in the superior temporal gyrus and anterior cingulate gyrus; (c) brain activation map for group interactions with accuracy of response in the self speech condition in the left middle temporal gyrus (P=0.01; <1 false positive cluster); in the control and non-hallucinator groups misattributions were associated with less activation than correct responses, but the converse was true in the hallucinator group; (d) percentage signal change plots for group × accuracy interaction in the left superior temporal gyrus (SSQ, sum of squares).
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