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  Abstract
  BackgroundThe 5HTTLPR genetic variant of the serotonin transporter gene (SERT or
5-HTT), which is comprised of a short (SERT-s) and a long (SERT-l)
allele, is associated with major depressive disorder and post-traumatic
brain disorder.

AimsThe present study sought to determine whether the total thalamus and
major subregions are altered in size in major depressive disorder and in
relation to the 5HTTLPR genotype.

MethodWe investigated the influence of 5HTTLPR genotype, psychiatric diagnosis,
suicide and other clinical factors on the volume of the entire
post-mortem thalamus.

ResultsMajor depressive disorder, SERT-ss genotype and suicide emerged as
independent factors contributing to an enlargement of the total thalamus.
The majority of the volume enlargement associated with the SERT-ss
genotype occurred in the pulvinar, whereas enlargement associated with
major depressive disorder occurred in the limbic nuclei and in other
regions of the thalamus. A history of antidepressant treatment was
associated with reduced thalamic volume.

ConclusionsThe 5HTTLPR genetic variation may affect behaviour and psychiatric
conditions, in part, by altering the anatomy of the thalamus.



 


   
    
	
Type

	Papers


 	
Information

	The British Journal of Psychiatry
  
,
Volume 192
  
,
Issue 4
  , April 2008  , pp. 285 - 289 
 DOI: https://doi.org/10.1192/bjp.bp.107.039180
 [Opens in a new window]
 
  


   	
Copyright

	
Copyright © Royal College of Psychiatrists,
2008 




  


 

 The serotonin transporter (SERT or 5-HTT) regulates brain serotonin (5-HT)
neurotransmission by removing neurotransmitter from the extracellular space.
Genetic variation in the promoter region of the SERT gene (5HTTLPR) is common,
and the short (SERT-s) and long (SERT-l) alleles of 5HTTLPR are emerging as
important mediators of emotional temperament and predisposition to mental
illness. Inheritance of SERT-s has been associated with an increased incidence
of both major depressive disorder and post-traumatic stress disorder, but not
other psychiatric conditions such as schizophrenia and bipolar disorder.
Reference Lin and Tsai1,Reference Lee, Lee, Kang, Kim, Kim, Kee, Kim, Kim, Kim and Yeon2,Reference Ikeda, Iwata, Suzuki, Kitajima, Yamanouchi, Kinoshita and Ozaki3
 The finding that lymphoblastoid cell lines from individuals homozygous
for the SERT-s allele (SERT-ss) have approximately half the 5-HT uptake
capacity of cells from SERT-l carriers has led to the expectation that SERT
levels would be found to be reduced in individuals with a SERT-ss genotype.
Reference Lesch, Bengel, Heils, Sabol, Greenberg, Petri, Benjamin, Muller, Hamer and Murphy4
 However, data obtained to date suggest that SERT expression in the human
central nervous system is largely independent of 5HTTLPR genotype, raising the
question of how this genetic variant influences behaviour and mental illness.
Reference Parsey, Hastings, Oquendo, Hu, Goldman, Huang, Simpson, Arcement, Huang, Ogden, Van Heertum, Arango and Mann5
 Recently, evidence for a robust 5HTTLPR influence on brain anatomy has
emerged. The SERT-s allele has been associated with a 25% reduction in volume
of the anterior cingulate cortex and amygdala, and a 20% increase in neuron
number and volume in the pulvinar nucleus of the thalamus.
Reference Pezawas, Meyer-Lindenberg, Drabant, Verchinski, Munoz, Kolachana, Egan, Mattay, Hariri and Weinberger6,Reference Young, Holcomb, Bonkale, Hicks, Yazdani and German7
 The pulvinar, cingulate and amygdala are interconnected nodes in the
limbic system involved in mediating such functions as attention to the threat
content of the environment and emotional response to pain.
Reference Skuse8
 Association of enlargement of the pulvinar nucleus of the thalamus with
SERT-ss genotype is a particularly interesting observation, since this
enlargement could potentially contribute to a ‘gain in function’ resulting in
accentuated emotional responses to environmental stimuli, with the additional
input to the limbic system contributing to altered limbic functioning and
anatomical deficits present in the amygdala, frontal cortex and cingulate lobe.
In the present study, we extended the investigation of the role of the 5HTTLPR
genotype and other clinical factors on the volume of the entire post-mortem
thalamus. We sought to determine whether the enlargement of the pulvinar in
individuals with SERT-ss genotype is specific for the pulvinar region, or
whether the entire thalamus is enlarged in these individuals.




 Method

 A total of 54 specimens from the Stanley Foundation Brain Collection with a
complete series of thalamic sections matched for age, gender and post-mortem
interval were utilised.
Reference Torrey, Webster, Knable, Johnston and Yolken9
 Controls were never diagnosed with psychiatric illness. Individuals with
a psychiatric illness were diagnosed with major depressive disorder, bipolar
disorder or schizophrenia. About half died by suicide. Individuals from each of
the three psychiatric diagnoses, and from suicide (12/17) and non-suicide
(11/22) categories, had been treated with antidepressants. Information on age,
post-mortem interval, time in formalin, gender and hemisphere sampled is
provided in Table 1. 


Table 1 Specimen characteristics
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Control
	
Major depressive disorder
	
Bipolar disorder
	
Schizophrenia

	
n
	15	14	13	12
	Age, years:
mean (s.d.)	48.1
(10.7)	45.2
(8.1)	43.7
(12.0)	44.3
(13.5)
	Post-mortem
interval, h: mean (s.d.)	23.7
(9.9)	28.0
(10.8)	31.8
(17.0)	34.1
(16.3)
	Brain weight,
g: mean (s.d.)	1501
(164)	1469
(145)	1453
(156)	1467
(111)
	Time in
formalin, months: mean (s.d.)	4.4 (3.4)	8.0 (6.6)	9.3 (3.7)	12.3
(9.1)
	Left
hemisphere sampled, %	46	36	54	42
	Female, %	40	43	38	33




 The entire thalamus from the formalin-fixed hemisphere was serially sectioned
at 60 μm thickness in the coronal plane, mounted on glass slides and stained
for Nissl with cresyl violet.
Reference Prophet, Mills, Arrington and Sobin10
 Thalamic borders were outlined in Nissl-stained sections using a
microscopic imaging system. The lateral thalamic boundary was defined as the
border of the reticular nucleus, and the ventrolateral border was defined by
the medial geniculate nucleus. The lateral geniculate nucleus was not included
in the total thalamic volume assessment. Cavalieri procedure
(StereoInvestigator PC software, version 6; MicroBrightField Inc, Williston,
Vermont, USA) was used to estimate thalamic volumes. Results are reported as
volume corrected for post-sectioning shrinkage in the
z-axis.

 A sample of DNA was extracted from frozen cerebellar tissue using the QIAAmp
DNA mini-kit, Qiagen, and 5HTTLPR genotype was determined in duplicate assays
using polymerase chain reaction.
Reference Heils, Mossner and Lesch11
 Oligonucleotide primers flanking 5HTTLPR and corresponding to the
nucleotide positions 1416 to 1397 (STPR5, 5′-GGCGTTGCCGCTCTGAATGC) and 910 to
888 (STPR3, 5′-GAGGGACTGAGCTGGACAACCAC) were used to generate 484- and
528-base-pair fragments. The assay consisted of a modified touchdown polymerase
chain reaction protocol with an antibody-mediated hot start. The polymerase
chain reaction products were visualised by running on a 1.8% agarose gel with
ethidium bromide.

 Owing to the many uncontrolled clinical and post-mortem variables present in
the cohort, our primary analysis was performed with analysis of covariance
(ANCOVA: JMP Macintosh software, version 5.01a) of the whole cohort (all
individuals n=54). The ANCOVA was repeated for individuals
with psychiatric illness alone (n=39) so that we could analyse
the effects of additional variables present only in these individuals.
Covariates in the complete ANCOVA were diagnosis, age, gender, hemisphere, time
in formalin and post-mortem interval, with suicide and treatment with
antidepressants added as additional cofactors in the ANCOVA subgroup of
individuals with psychiatric illness. A truncated genotype categorisation was
used for the primary analysis (SERT-ss v. SERT-sl/ll) in order
to maintain statistical power. After these primary analyses were complete, we
performed exploratory testing such as reanalysing the data with a full genotype
categorisation (SERT-ss v. SERT-sl v.
SERT-ll).




 Results

 Overall, 14 people possessed the SERT-ss genotype (bipolar disorder 2/13, major
depressive disorder 5/14, schizophrenia 5/12, controls 2/15), and 16 possessed
the SERT-ll genotype (bipolar disorder 5/13, major depressive disorder 3/14,
schizophrenia 2/12, controls 6/15). People with a SERT-ss genotype were not
significantly different with respect to age, gender, suicide, diagnosis,
substance or alcohol misuse from people with a SERT-sl/ll genotype
(P>0.05).


 Total thalamic volume

 For the analysis of the 54 samples from all four diagnostic categories,
covariate effects were observed for SERT genotype (ss>sl/ll), diagnosis
(major depressive disorder>others), gender (male>female), age (4.6%
reduction per decade), but not hemisphere, time in formalin or post-mortem
interval (see Table 2 and online
Fig. DS1). Inspection of the ANCOVA least squared means indicates a
significant 11% thalamic enlargement between individuals with SERT-ss
genotype v. SERT sl/ll genotype, and a significant 12%
enlargement in people with major depressive disorder compared with controls.
The subgroup ANCOVA limited to people with psychiatric illness revealed
similar covariate effects for SERT genotype, diagnosis, gender and age
(Table 2). In addition, we
observed significant covariate effects for time in formalin (0.3% reduction
per month), hemisphere (right>left), suicide (suicide>non-suicide) and
antidepressant medication (non-treatment>treatment). Suicide was
associated with an 8% enlargement of the thalamus, whereas antidepressant
treatment was associated with an 18% lower total thalamic volume. The
antidepressant effect was most evident in the schizophrenia group, which was
relatively well-balanced for positive and negative histories of
antidepressant usage. The nine covariate factors in the second ANCOVA
produced a highly informative model predicting total thalamus volume
(r
2=0.793, P<0.0001). As a post
hoc validation of the subgroup ANCOVA findings, we performed
forward stepwise multiple regression for individuals with psychiatric
illness alone. All of the above significant covariates, except for time in
formalin and hemisphere, were identified in the stepwise regression model as
significant and independent predictors of total thalamic volume. Also, we
performed an exploratory ANCOVA using thalamic volume normalised for whole
brain weight. The SERT-ss genotype and major depressive disorder diagnosis
effects remained significant in this analysis, supporting a selective effect
of these variables on thalamic volume as compared with the brain as a whole.
To clarify SERT allele effects, we removed post-mortem interval (a
non-significant factor in all models) and substituted the two-way with a
three-way genotype categorisation (SERT-ss v. SERT-sl
v. SERT-ll). In this exploratory ANCOVA, only
individuals with SERT-ss genotype had an enlarged thalamus compared with
individuals with either SERT-sl or SERT-ll genotypes; individuals with
SERT-sl and SERT-ll genotypes were not significantly different from each
other. 


Table 2 Total thalamic volume: analysis of covariance
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All individuals (n=54)
		
Individuals with psychiatric illness
(n=39)
	
	
Covariate
	

F ratio
	

P

	

F ratio
	

P


	SERT-ss	4.63	0.037	5.78	0.023
	Diagnosis	2.79	0.049	15.07	0.001
	Age	14.31	0.001	11.1	0.003
	Gender	4.09	0.049	19.9	0.001
	Hemisphere	0.28	NS	5.1	0.033
	Post-mortem
interval	0.14	NS	2.1	NS
	Time in
formalin	0.61	NS	5.0	0.033
	Antidepressants
a

	–	–	41.6	0.001
	Suicide
a

	–	–	7.69	0.009




 NS, not significant; SERT-ss, SERT-ss genotype 
v.
 SERT-sl/ll genotypes combined




a. History of antidepressant use and suicide not included as
covariates in this ANCOVA










 Regional effects associated with SERT-ss and major depressive
disorder

 We had previously determined volumes of mediodorsal,
anteroventral/anteromedial and pulvinar nuclei in the samples used in the
current study (Fig. 1).
Reference Young, Holcomb, Bonkale, Hicks, Yazdani and German7,Reference Young, Holcomb, Yazdani, Hicks and German13
 In the previous studies, we observed that major depressive disorder
was associated with significant enlargement of the limbic (mediodorsal and
anteroventral/anteromedial) thalamus, and that SERT-ss genotype was
primarily associated with enlargement of the pulvinar nuclei. The present
study indicates a mean total thalamic volume enlargement of 654
mm3 associated with major depressive disorder, and of 444
mm3 associated with the SERT-ss genotype (Fig. 1). Our previously published data indicate that in
the limbic thalamus there was a mean 167 mm3 volume enlargement
associated with major depressive disorder, and in the pulvinar there was a
mean 256 mm3 volume enlargement associated with the SERT-ss
genotype. Therefore, we conclude that 26% (167/654 mm3) of the
total enlargement associated with major depressive disorder occurs in the
limbic thalamus, and that 57% (256/444 mm3)of the total
enlargement associated with SERT-ss genotype occurs in the pulvinar. Figure 1 illustrates the localisation of
SERT-ss and major depressive disorder enlargement effects in limbic and
pulvinar subregions of the thalamus and, by subtraction, the enlargement
that can be allocated to the remaining nuclei of the thalamus. The data
indicate that the majority of enlargement associated with SERT-ss occurs in
the pulvinar, whereas a relatively large portion of that associated with
major depressive disorder occurs outside of the limbic and pulvinar thalamic
regions. 

[image: ]




Fig. 1 Illustration of the thalamus. (a) The location of the pulvinar
(PUL) and limbic (mediodorsal (MD) and anteroventral/anteromedial
(AV/AM)) regions of the thalamus. The remainder of the thalamus is
comprised of a variety of nuclei. Pie charts: area enlarged in the
SERT-ss genotype group (b) and the major depressive disorder group
(c). The majority (57%) of the total thalamic enlargement related
to the SERT-ss genotype occurs in the pulvinar (b), whereas that
associated with major depressive disorder occurs primarily outside
of the pulvinar and limbic thalamus (c). Adapted from Carpenter
& Sutin.
Reference Carpenter and Sutin12











 Discussion

 The present data indicate that both the SERT-ss genotype and major depressive
disorder influence the total volume of the thalamus. The thalamus is enlarged
by approximately 11% in people carrying the 5HTTLPR SERT-ss genotype. A similar
magnitude enlargement of the thalamus, independent from the 5HTTLPR effect, was
observed in people with major depressive disorder compared with controls.
Thalamic enlargement is not likely to be related to an overall larger brain in
people with SERT-ss genotype and major depressive disorder because the thalamic
enlargement effect remained significant after normalising for whole brain
weight. Although we did not measure total thalamic neuron number in the present
study, we have previously observed that both volume and neuron number are
increased in the pulvinar in people with SERT-ss genotype and in the limbic
thalamus of people with major depressive disorder.
Reference Young, Holcomb, Bonkale, Hicks, Yazdani and German7,Reference Young, Holcomb, Yazdani, Hicks and German13




 Thalamic volume and SERT-ss

 The present data suggest that the SERT-ss thalamic enlargement is
particularly robust in the pulvinar, since 57% of the total thalamic
enlargement occurs in this nucleus (which occupies about 30% of the
thalamus). We also found preliminary evidence that SERT-ss enlargement is
present in the limbic thalamus (mediodorsal and anteroventral/anteromedial),
where 26% of the total thalamic enlargement occurred. Combining these
results, the great majority (83%) of SERT-ss thalamic enlargement occurs in
these two regions, which together comprise about a half of the entire
thalamus. Both the pulvinar and limbic thalamus contain a dense plexus of
SERT-containing serotonin fibres, with the pulvinar in particular being a
site of very dense 5-HT innervation. It is striking that the pulvinar and
midline thalamic regions, which contain a very dense plexus of
SERT-containing fibres, are sites of major anatomic changes associated with
inheritance of the SERT-ss genetic variation.
Reference Jarkas, McConathy, Votaw, Voll, Malveaux, Camp, Williams, Goodman, Kilts and Goodman14
 The high density of SERT in these regions may provide a substrate for
5HTTLPR-associated alterations in 5-HT neurotransmission to affect both
thalamic anatomy and function. In addition to the high levels of SERT
present in the mature thalamus, SERT is also critically involved in shaping
the anatomy of both the thalamus and cortex during development. For
instance, in SERT knockout mice, the complex patterning of thalamocortical
connectivity is altered, and there is a reduction in programmed cell death
in the thalamus.
Reference Persico, Mengual, Moessner, Hall, Revay, Sora, Arellano, DeFelipe, Gimenez-Amaya, Conciatori, Marino, Baldi, Cabib, Pascucci, Uhl, Murphy, Lesch and Keller15,Reference Persico, Baldi, Dell'Acqua, Moessner, Murphy, Lesch and Keller16
 Furthermore, during the period when thalamic fibres first reach the
cortex, some glutamatergic thalamocortical neurons transiently express SERT
on their axons.
Reference Verney, Lebrand and Gaspar17
 Further study is needed to investigate how 5HTTLPR genetic variation
influences the development of the thalamus.

 Anatomical changes in the thalamus associated with 5HTTLPR may contribute to
genetic susceptibility to major depressive disorder, post-traumatic stress
disorder and other conditions (e.g. suicide and anxiety).
Reference Serretti, Calati, Mandelli and De Ronchi18
 Functionally, the pulvinar processes information related to
environmental threat, such as facially expressed fear, and relays this
information to important nodes in the limbic system.
Reference Skuse8
 Both the pulvinar and the limbic thalamus are intimately connected to
the anterior cingulate cortex, a brain area involved in processing
internally generated thoughts, emotional responses to pain and attention to
negative consequences. In major depressive disorder, there is evidence that
elevated levels of introspection, rumination (brooding) and attention to
negative facial expressions are very common, and display trait rather than
state variability.
Reference Joormann, Dkane and Gotlib19
 Given the intimate connections of the pulvinar and limbic thalamus to
the limbic system, thalamic enlargement may contribute to behavioural
problems in major depressive disorder and other mood disorders by
facilitating activity of the anterior cingulate and other limbic centres.
Interestingly, Greicius et al have shown that resting-state
functional connectivity between the medial thalamus and the anterior
cingulate is accentuated in major depressive disorder, with the most
affected areas being found in the medial thalamus and pulvinar.
Reference Greicius, Flores, Menon, Glover, Solvason, Kenna, Reiss and Schatzberg20
 Our data suggest that thalamic enlargement represents a possible
explanation for this accentuated functional connectivity. Furthermore,
because of the close anatomical connections between the thalamus and the
limbic system, thalamic anatomical changes in people with SERT-ss genotype
may directly contribute to 5HTTLPR-associated reductions in grey matter
volume in the amygdala and cingulate cortex.
Reference Pezawas, Meyer-Lindenberg, Drabant, Verchinski, Munoz, Kolachana, Egan, Mattay, Hariri and Weinberger6
 These anatomical substrates may be future targets for surgical
interventions. It has been demonstrated that deep brain stimulation of the
white matter tracts connecting the thalamus with the anterior cingulate
alleviates symptoms of severe depression.
Reference Mayberg, Lozano, Voon, McNeely, Seminowicz, Hamani, Schwalb and Kennedy21
 It will be interesting to determine whether the efficacy of deep
brain stimulation is related to the interruption of excessive thalamic input
to the cingulate cortex. Thus, although it is clear that 5HTTLPR genetic
variation could have an effect on 5-HT neurotransmission and behaviour by
altering SERT kinetics and affecting 5-HT levels in the mature brain, the
present data support an alternative hypothesis implicating 5HTTLPR-related
alterations in brain anatomy as being important factors in mediating major
depressive disorder and other affective states.
Reference Lesch, Bengel, Heils, Sabol, Greenberg, Petri, Benjamin, Muller, Hamer and Murphy4






 Thalamic volume and psychiatric symptoms

 In addition to SERT-ss effects on the volume of the thalamus, we observed
that people diagnosed with major depressive disorder have 12% larger thalami
compared with controls. Previously, we reported that limbic nuclei, but not
the pulvinar, were enlarged in people with major depressive disorder.
Reference Young, Holcomb, Bonkale, Hicks, Yazdani and German7,Reference Young, Holcomb, Yazdani, Hicks and German13
 However, since the previously observed limbic enlargement
(mediodorsal and anteroventral/anteromedial) represents only 26% of the
total thalamic enlargement, there must be a substantial enlargement in other
thalamic regions in major depressive disorder. Possibilities for the site of
this enlargement include nuclei of the ventral tier (ventroanterior,
ventrolateral) and a variety of smaller nuclei (reticular, centromedian,
laterodorsal, medial geniculate).

 The present data suggest that death by suicide is associated with thalamic
enlargement in people with psychiatric illness. Notice in online Fig. DS1
that many of the individuals that died by suicide (marked in red) had large
thalami. Although other subcortical structures such as the adrenal glands
and pituitary are enlarged in people likely to die by suicide, the present
data represent the first evidence for enlargement of the thalamus in suicide.
Reference Thomas and Debilis22,Reference Dumser, Barocka and Schubert23
 Like major depressive disorder, suicide has been linked to
developmental stress, including physical and sexual abuse, which have
profound influences on brain serotonin.
Reference Mann, Waternaux, Haas and Malone24,Reference Bennett, Lesch, Heils, Long, Lorenz, Shoaf, Champoux, Suomi, Linnoila and Higley25
 As described above, it may be possible that developmental stress and
trauma exacerbate thalamic enlargement by potentiating 5HTTLPR effects on
serotonergic neurotransmission during a critical developmental period. If
that is the case, then thalamic enlargement may be an example of an
anatomical substrate affected by a serotonergic gene×environment interaction.
Reference Caspi, Sugden, Moffitt, Taylor, Craig, Harrington, McClay, Mill, Martin, Braithwaite and Poulton26






 Thalamic volume and antidepressants

 Many antidepressant drugs block reuptake of 5-HT by interacting directly
with SERT. In the present study, a history of antidepressant use in people
with psychiatric illness was associated with a smaller thalamic volume. This
observation contrasts with antidepressant effects observed in the
hippocampus, where the medication is associated with volume enlargement.
Reference Vermetten, Vythilingam, Southwick, Charney and Bremner27
 The presence of smaller thalami in people with psychiatric illness
with a history of treatment with antidepressants suggests either that
thalamic tissue mass shrinks when individuals are administered
anti-depressants, or that individuals with larger thalami are less likely to
be given antidepressants. Although it is tempting to conclude that
antidepressant treatment interacts with the serotonergic system to reverse
thalamic enlargement, further study is needed to determine whether this is
indeed the case, or whether individuals that do not receive antidepressants
comprise a unique group of people possessing relatively large thalami.




 Further research

 The present data indicate that there was a twofold variation in thalamic
volume among the people investigated in this study. Multiple factors,
including post-mortem, clinical and genetic factors, contributed to this
variation. It is notable that the ANCOVA model produced by controlling for
nine cofactors captured a substantial portion of this variation
(r
2=0.79). The success of the model sets limits on improvements
that could be made by inclusion of additional genetic variants or clinical
factors. Thus, careful attention to clinical factors such as SERT genetic
background, suicidality and antidepressant treatment, not normally
controlled for in structural brain studies, may provide a means to decrease
variability and improve power in post-mortem and structural MRI studies.

 In summary, the present data indicate that a diagnosis of major depressive
disorder, SERT-ss genotype and suicide are associated with thalamic
hypertrophy, whereas people with a history of treatment with antidepressants
have smaller thalami. Individuals with enlarged thalami may have an
anatomical vulnerability to stress, owing to alterations in thalamocortical
circuit function. The present findings support the broad hypothesis that a
5-HT-linked brain structural phenotype, characterised in part by thalamic
enlargement, may predispose individuals to symptoms of depression and to
related behaviours such as suicide.
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 Table 1 Specimen characteristics
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 Table 2 Total thalamic volume: analysis of covariance
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 Fig. 1 Illustration of the thalamus. (a) The location of the pulvinar (PUL) and limbic (mediodorsal (MD) and anteroventral/anteromedial (AV/AM)) regions of the thalamus. The remainder of the thalamus is comprised of a variety of nuclei. Pie charts: area enlarged in the SERT-ss genotype group (b) and the major depressive disorder group (c). The majority (57%) of the total thalamic enlargement related to the SERT-ss genotype occurs in the pulvinar (b), whereas that associated with major depressive disorder occurs primarily outside of the pulvinar and limbic thalamus (c). Adapted from Carpenter & Sutin.12
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