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  Abstract
  BackgroundLate-life depression has been associated with cerebrovascular disease and
especially with ischaemic white matter hyperintensities on magnetic
resonance imaging. Neuroimaging and morphometric studies have identified
abnormalities in the dorsolateral prefrontal cortex.

AimsTo examine glial and neuronal density and neuronal volume in the
dorsolateral prefrontal cortex in late-life major depression.

MethodWe used the disector and nucleator methods to estimate neuronal density
and volume and glial density of cells in the dorsolateral prefrontal
cortex in a post-mortem study of 17 individuals with late-life major
depression and 10 age-matched controls.

ResultsWe found a reduction in the volume of pyramidal neurones in the whole
cortex, which was also present in layer 3 and more markedly in layer 5.
There were no comparable changes in non-pyramidal neurones and no glial
differences.

ConclusionsOverall, we found a decrease in pyramidal neuronal size in the
dorsolateral prefrontal cortex in late-life depression.
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 Studies suggest depression in older people (commonly known as late-life
depression) has a different aetiology from depression in younger adults.
Reference Baldwin, Jacoby, Oppenheimer and Dening1
 In particular, accumulating evidence showing that cerebrovascular
disease plays an important role in late-life depression has led to the
‘vascular depression’ hypothesis.
Reference Alexopoulos, Meyers, Young, Campbell, Silbersweig and Charlson2
 This proposes that cerebrovascular disease and associated tissue
ischaemia in key brain areas (prefrontal and subcortical grey matter) is an
important cause of depression in older people. As the importance of genetic and
early-life aetiological factors for major depression diminishes in later life,
so neurobiological factors come to play a correspondingly larger role.
Reference O'Brien, Thomas and Goodyear3
 Consequently, there is evidence that depression beginning in later life,
where the first episode of depression occurs after age 60 years (late-onset
depression), has a larger contribution from cerebrovascular disease
Reference Salloway, Malloy, Kohn, Gillard, Duffy and Rogg4
 and it is therefore important to explore the role of age at depression
onset within the larger group of all people with late-life depression; that is,
whether older people whose illness begun earlier in life (before age 60,
early-onset depression) may have different neurobiological features from those
with late-onset depression. The dorsolateral prefrontal cortex has been
identified as a key area in depression and previous quantitative post-mortem
neuropathological studies have identified abnormalities in neurones and glia in
the dorsolateral prefrontal cortex in younger adults.
Reference Miguel-Hidalgo, Baucom, Dilley, Overholser, Meltzer and Stockmeier5,Reference Rajkowska, Miguel-Hidalgo, Wei, Dilley, Pittman and Meltzer6
 We have reported increases in the inflammatory markers intercellular
adhesion molecule-1 (ICAM-1)
Reference Thomas, Ferrier, Kalaria, Woodward, Ballard and Oakley7
 and vascular cell adhesion molecule-1 (VCAM-1)
Reference Thomas, Ferrier, Kalaria, Davis and O'Brien8
 in the microvessels of both grey and white matter of the dorsolateral
prefrontal cortex in late-life depression. In autopsy studies, we have also
reported an excess of ischaemic deep white matter hyperintensities in people
with depression compared with controls and the great majority of these
ischaemic lesions were found in the white matter of the dorsolateral prefrontal cortex,
Reference Thomas, O'Brien, Davis, Ballard, Barber and Kalaria9
 suggesting the inflammatory response may be as a result of
cerebrovascular disease and associated ischaemia. To our knowledge, there has
been only one previous three-dimensional morphometric study in the prefrontal
cortex in late-life depression. Rajkowska and colleagues
Reference Rajkowska, Miguel-Hidalgo, Dubey, Stockmeier and Krishnan10
 estimated glial and neuronal densities in 15 people with late-life
depression and 11 controls, and found no change in glial density but a
significant reduction in pyramidal neuronal density, most marked in pyramidal
layers 3 and 5. They did not examine neuronal volume. We examined glial and
neuronal density and neuronal volume in the dorsolateral prefrontal cortex in
late-life major depression. We hypothesised that people with depression would
have reduced neuronal density and reduced neuronal volume as a result of tissue
ischaemia in accordance with the ‘vascular depression’ model.




 Method


 Sample

 We obtained brain tissue from the Newcastle Brain Tissue Resource from
elderly people who during life had major depression and elderly comparison
controls. Permission for post-mortem research had been given by the
individuals and ethical approval has been granted for the use of the tissue
in this study. Most of the tissue analysed was from individuals included in
our previous reports
Reference Thomas, Ferrier, Kalaria, Perry, Brown and O'Brien11,Reference Thomas, Ferrier, Kalaria, Davis and O'Brien8
 but some tissue was from individuals new to the Newcastle Brain
Tissue Resource. We reviewed the case notes for information on vascular risk
factors and medication.

 All tissue was from individuals who were over 60 years old; 17 individuals
with DSM–IV major depression
12
 and no history of any other psychiatric or neurological disorder, and
10 psychiatrically healthy comparison controls. All comparison controls were
known to be capable of living independently and met the same criteria except
they had never suffered a depressive episode. Individuals with depression
had all received a clinical assessment and diagnosis during life by senior
psychiatrists, and the Newcastle Clinicopathological committee (including
senior research psychiatrists and neuropathologists) reviewed all their
medical records after death together with information from the post-mortem
and standardised neuropathological assessments. Diagnoses were confirmed and
individuals were excluded if they showed evidence of significant cognitive
impairment during life or if they met neuropathological criteria for any
known cause of dementia (e.g. Alzheimer's disease, vascular dementia or
dementia with Lewy bodies) or had evidence of any other neurological
disorder.

 Demographic, clinical and histopathological information on the study sample
is summarised in Table 1. There
were no significant differences between the groups in age (d.f. = 25,
t = 0.324, P = 0.749), gender
(χ2 = 0.318, P = 0.573), tissue pH (d.f. =
25, t = 1.539, P = 0.136), duration of
tissue fixation (d.f. = 25, t = 0.453, P =
0.655), post-mortem interval (d.f. = 25, t = 0.908,
P = 0.373) and brain weight (d.f. = 22,
t = 0.762, P = 0.454). The causes of
death were similar in the two groups, with only one individual with
depression dying by suicide. The clinical features of the individuals with
depression showed that in most cases they had experienced severe depressive
illnesses as all except one had required in-patient care for their
depression and most had received at least one course of electroconvulsive
therapy. They had all received standard antidepressant treatment regimes,
with selective serotonin reuptake inhibitors or tricyclic antidepressants
singly or often in combination with other agents. Age at depression onset
was determined from the case-note review. No controls had taken any
antidepressant or mood-stabilising medication. From the case-note review, we
found similar overall levels of key vascular risk factors in both groups
(myocardial infarction, angina pectoris, hypertension, diabetes mellitus,
atrial fibrillation, cardiac failure and smoking), as in our previous report.
Reference Thomas, Ferrier, Kalaria, Perry, Brown and O'Brien11




Table 1 Demographic, histopathological and clinical information for
individuals with depression and controls
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		Depression group n = 17	Control
group n = 10
	Age at
death, years: mean (s.d.)	76.1
(7.05)	77.0
(7.69)
	Gender,
n
		
	   Male	5	4
	   Female	12	6
	Histopathological information, mean (s.d.)		
	   pH	6.17
(0.34)	5.96
(0.34)
	   Fixation, months	104.35
(62.91)	92.60
(68.93)
	   Post-mortem interval, h	33.24
(20.33)	26.90
(10.79)
	   Brain
weight, g	1215
(154.96)	1165.63
(137.83)
	Clinical
features		
	   Age at
depression onset, years: mean (s.d.)	63.65
(14.02)	
	   Depressed at death, n
	14	
	   Required in-patient psychiatric care, n
	16	
	   Had
received electroconvulsive therapy, n
	10	
	   Taking
antidepressants at death, n
	12	
	Cause of
death, n
		
	   Suicide	1	0
	   Pneumonia	6	2
	   Carcinoma	2	4
	   Ischaemic heart disease	2	1
	   Cardiac
failure	2	2
	   Cardiac
arrest	3	1
	   Renal
failure	1	0







 Tissue

 After death, the right hemisphere was fixed in 10% formalin. Tissue pH and
brain weight were recorded for tissue from each individual and the delay
from death to formalin fixation was noted. Tissue slices were obtained and
sampled from pre-defined dorsolateral prefrontal cortex blocks (Brodmann
areas 9 and 46). Coronal slices from each individual were selected to
include Brodmann areas 9 and 46 according to a standard map.
Reference Perry13
 These blocks were embedded in paraffin wax and the duration of
fixation of these blocks was recorded. A series of 20 30 μm sections was cut
from each block and stained using cresyl fast violet. The quality of the
sections and the staining was carefully checked for consistency and all
slides were coded so that all analysis could be carried out blind to
diagnosis. For each individual, 3 of the 20 sections were randomly sampled
from these sections for morphometric analysis.




 Neuronal and glial estimates

 To test our hypotheses, we estimated neuronal density and volume and glial
density across the whole cortex and in laminae 3 and 5. We chose these
layers based on the previous evidence of neuronal pathology in the
orbitofrontal cortex in late-life depression
Reference Rajkowska, Miguel-Hidalgo, Dubey, Stockmeier and Krishnan10
 and because we wished to avoid over-analysis by making these
estimates in every cortical layer. Neurones were identified using standard
criteria: that is, the presence of a nissl-stained cytoplasm, pale nucleus
and single identifiable nucleolus in cells that were not spherical like
glia. Pyramidal neurones were distinguished from non-pyramidal neurones by
the former having a characteristic triangular morphology with a prominent
apical dendrite and smaller basal dendrites. Glial cells were identified by
their spherical shape, absence of nissl staining in the cytoplasm and the
heterogenous arrangement of chromatin in the nucleus. The consistent
application of these criteria were checked by the main rater (A.K.) working
together with the senior investigator trained in stereological methodology
(A.T.) and the experienced microscopist and research neuroscientist (A.O.).
We viewed the sections in oil using a Zeiss Axioplan photomicroscope with a
× 100 objective and numerical aperture of 1.25. The microscope was attached
to a JVC colour video camera TK-C1360B (JVC UK Ltd, London, UK), a motorised
x- and y-axis stage accurate to 1 μm
(Optiscan ES110, Prior Scientific Instruments Ltd, Cambridge, UK) and a
Heidenhain z-axis depth gauge accurate to 0.5 μm
(Heidenhain GB Ltd, London, UK) to ensure accurate measurement of disector
depth. We used image analysis software (Histometrix Version 5, Kinetic
Imaging Ltd, Liverpool, UK) to apply the disector
Reference Gundersen, Bagger, Bendtsen, Evans, Korbo and Marcussen14,Reference Sterio15
 and nucleator
Reference Gundersen16
 methods to obtain our density and volume estimates.

 Before conducting this study, we had carried out a pilot study to ensure we
sampled neurones and glia evenly across the six neocortical laminae and in
sufficient numbers to produce meaningful estimates. Based on our findings,
we used a random sampling strategy across the cortex, with the individual
laminae 3 and 5 counted separately. We conducted estimates using one
disector per field and over 100 fields across the cortex and over 35 in each
pyramidal layer for each section. Each disector was 64.7 μm long, 54.4 μm
wide and 15 μm deep. Using the Heidenhain depth gauge, we measured the
section thickness of the stained sections and found them to be a mean of
27.4 μm thick, giving a mean guard area of over 6 μm above and 6 μm below
the dissector (we were aware that microtomes do not provide accurate
measures of section thickness and think the sections were actually cut
therefore at greater than 30 μm). There was no difference in section
thickness after processing between the groups (t = 1.15,
P = 0.26) and thus no evidence of differential
shrinkage. The mean coefficients of error for the neuronal and glial
estimates showed they were made with a high degree of precision (for glial
density 2.2%; for pyramidal neurone density 3.0%; for non-pyramidal neurone
density 2.4%; for pyramidal neurone volume 0.3%; for non-pyramidal neurone
volume 2.5%).




 Statistics

 Tests for normality were conducted and unpaired, two-way Student's
t-tests were used to compare the group with depression
and the control group on the primary estimates and also on their basic
demographic, clinical and histopathological variables. The early-onset,
late-onset and control groups were compared using ANOVA in secondary
analyses and we covaried as appropriate. We also used correlation
coefficients to examine the effect of age at depression onset. All
comparisons were carried out using SPSS (version 15.0) for Windows.






 Results


 Cell density and volume from the total dorsolateral prefrontal
cortex

 Figures 1 and 2 show box plots of the glial and neuronal cell
densities respectively and Fig. 3
displays scatter plots of the cell volumes for the planned comparisons. As
shown in Figs 1 and 2, there were no significant differences
in glial (d.f. = 25, t = 0.089, P =
0.930), pyramidal (d.f. = 25, t = 0.129, P
= 0.898) or non-pyramidal (d.f. = 25, t = 0.496,
P = 0.624) density in the dorsolateral prefrontal cortex
as a whole. As shown in Fig. 3, there
was a significant reduction in pyramidal neuronal volume in the group with
depression (d.f. = 25, t = 2.490, P =
0.020; difference in means 61.53 (95% CI for difference 10.67–112.38), which
equates to a large effect size, Cohen's d = 0.91 (95% CI
0.43–1.39)). However, no such difference was found in the volume of
non-pyramidal neuronal population (d.f. = 25, t = 0.620,
P = 0.541). Removal of the data from the outlying
individuals who had depression did not affect the significance of our
finding (P = 0.022) but removal also of the two highest
controls resulted in the difference becoming non-significant
(P = 0.106). 
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Fig. 1 Box plots of glial cell densities in layers of the dorsolateral
prefrontal cortex.
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Fig. 2 Box plots of neurone densities in layers of the dorsolateral
prefrontal cortex.
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Fig. 3 Scatter plots of neurone volume in layers of the dorsolateral
prefrontal cortex.







 Cell density and volume from layers 3 and 5

 Figures 1 and 2 also show the cellular density in the two pyramidal
cell layers of the dorsolateral prefrontal cortex. As with the cortex as a
whole, there were no differences between the two groups in layer 3 in glial
(d.f. = 25, t = 0.200, P = 0.843),
pyramidal (d.f. = 25, t = 0.752, P =
0.459) or non-pyramidal (d.f. = 25, t = 0.657,
P = 0.517) neuronal density. Similarly, there were no
group differences in layer 5 in glial (d.f. = 25, t =
0.601, P = 0.553), pyramidal (d.f. = 25, t
= 0.632, P = 0.533) or non-pyramidal (d.f. = 25,
t = 0.147, P = 0.884) neuronal
density.


Figure 3 also shows the data for the
neuronal volumes in laminae 3 and 5. In layer 3, there was a trend for
pyramidal neurones to be smaller in those individuals who had depression
(d.f. = 25, t = 1.963, P = 0.061;
difference in means 69.72 (95% CI for difference −3.42 to 142.86)), equating
to an effect size of 0.74 (95% CI 0.04–1.44), but there were no differences
in non-pyramidal neurones (d.f. = 25, t = 0.839,
P = 0.409). In layer 5, there was a significant
reduction in the volume of the pyramidal neurones in the group with
depression (d.f. = 25, t = 2.605, P =
0.015; difference in means 74.52 (95% CI for difference 15.59–133.45)),
indicating a large effect (Cohen's d = 0.94 (95% CI
0.38–1.5)), but again there was no difference in the non-pyramidal neurones
(d.f. = 25, t = 0.629, P = 0.535). Removal
of the outlying values in layer 5 did not alter the significance of this
pyramidal volume reduction (P = 0.006).

 As many of the people with depression were receiving antidepressant
medication when they died, it is possible our finding of reduced pyramidal
neuronal volume may be a medication rather than a disease effect. To
investigate this possibility, we compared the 5 individuals with depression
not taking medication at death with the 12 individuals on such medication
and found no significant differences in pyramidal neuronal volume between
these groups in the whole cortex or in layers 3 and 5
(P>0.1 for all comparisons).




 Cellular densities and volumes in early- and late-onset
depression

 As a secondary set of analyses, we also explored whether age at depression
onset affected cellular densities and volumes. This data is shown in Figs
4, 5 and 6. Comparing groups
of late-onset depression (late-onset depression, first episode of major
depression at ⩾60 years n = 11), early-onset depression
(n = 6), and controls (n = 10), there
were no overall differences in age, gender, pH or post-mortem interval
between the groups, but there was a trend level of difference in duration of
tissue fixation (d.f. = 2,24, F = 2.703, P
= 0.087) and so we covaried for this in all analyses. In the dorsolateral
prefrontal cortex overall, there were differences in glial density between
early- and late-onset depression groups (d.f. = 2,24, F =
4.086, P = 0.018), as a result of an increase in glial
density in early onset of depression (early-onset depression
v. controls, F = 4.769,
P = 0.028; early-onset depression v.
late-onset depression, F = 3.226, P =
0.070), with a smaller reduction in density in late-onset depression
(late-onset depression v. controls, F =
3.870, P = 0.040). Pyramidal neuronal volume was also
significantly different (d.f. = 2,24, F = 3.517,
P = 0.031) as a result of reductions in neuronal volume
in both early-onset depression and late-onset depression (early-onset
depression v. late-onset depression, F =
2.129, P = 0.156; early-onset depression
v. controls F = 3.245, P
= 0.072; late-onset depression v. controls,
F = 3.574, P = 0.049). There were no
other differences in the whole dorsolateral prefrontal cortex and
correlations controlling for fixation did not suggest a relationship between
age at depression onset and glial density (r = −0.072,
P = 0.792) or pyramidal volume (r =
0.163, P = 0.547) in the whole dorsolateral prefrontal
cortex. There were no group differences in any density or volume estimate in
lamina 3 and no correlations of any variable with age at depression onset.
Findings in lamina 5 were similar to those in the whole cortex, with a
significant difference in glial density (d.f. = 2,24, F =
4.553, P = 0.012) being a result of glial density increase
in early-onset depression (early-onset depression v.
late-onset depression, F = 4.309, P =
0.035; early-onset depression v. controls,
F = 5.109, P = 0.023; late-onset
depression v. controls, F = 3.256,
P = 0.062). There was also a difference in the pyramidal
neuronal volume (d.f. = 2,24, F = 4.633, P
= 0.011), again as a result of reductions in volume in both early-onset
depression and late-onset depression compared with controls (early-onset
depression v. late-onset depression, F =
2.840, P = 0.092; early-onset depression
v. controls, F = 4.091, P
= 0.042; late-onset depression v. controls,
F = 3.745, P = 0.044). In lamina 5,
there was a significant difference in non-pyramidal neuronal volume (d.f. =
2,24, F = 3.144, P = 0.045) principally as
a result of early-onset depression neurones being smaller than late-onset
depression neurones (early-onset depression v. late-onset
depression, F = 5.170, P = 0.021; early
onset of depression v. controls, F =
1.491, P = 0.261; late-onset depression v.
controls, F = 2.947, P = 0.078). Again,
correlations showed no relationship of any estimate with age at depression
onset. 
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Fig. 4 Box plots of glial cell densities in layers of the dorsolateral
prefrontal cortex in early- and late-onset depression.
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Fig. 5 Box plots of neurone densities in layers of the dorsolateral
prefrontal cortex in early- and late-onset depression.
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Fig. 6 Scatter plots of neurone volume in layers of the dorsolateral
prefrontal cortex in early- and late-onset depression.









 Discussion

 We have identified pyramidal neuronal pathology, specifically reduced pyramidal
cell volume, in the dorsolateral prefrontal cortex in late-life major
depression. Although we did not find the reduction in pyramidal neuronal
density reported by Rajkowska and colleagues in the orbitofrontal cortex,
Reference Rajkowska, Miguel-Hidalgo, Dubey, Stockmeier and Krishnan10
 we have also found cellular changes in the pyramidal neurone population
in late-life depression. Neither our study nor the previous report from the
orbitofrontal cortex found an overall glial reduction which has been
consistently reported in major depression in younger adults.
Reference Rajkowska, Miguel-Hidalgo, Wei, Dilley, Pittman and Meltzer6,Reference Cotter, Mackay, Landau, Kerwin and Everall17
 Our finding that there was no difference in non-pyramidal cell density
also agrees with Rajkouska et al and additionally we did not
find any difference in non-pyramidal neuronal volume.

 Prefrontal cortical pyramidal neurones are largely glutamatergic and whereas
those in layer 3 are mainly association fibres projecting ipsilaterally, or
less frequently contralaterally to other cortical association areas,
glutamatergic neurones in layer 5 project mainly to the striatum.
Reference Kaufer, Lewis, Miller and Cumming18
 These glutamatergic projections from the dorsolateral prefrontal cortex
synapse with GABAergic neurones in the dorsolateral aspect of the head of the
caudate nucleus. These layer 5 pyramidal neurones are vulnerable to ischaemic
damage as they traverse the white matter to the caudate nucleus. An increase in
white matter hyperintensities is well recognised in late-life depression and in
our previous report we found such lesions to be ischaemic.
Reference Thomas, O'Brien, Davis, Ballard, Barber and Kalaria9
 White matter hyperintensities and associated inflammation may therefore
be associated with demyelination of and dysfunction in the axons of these
pyramidal neurones, leading to the observed structural changes in the cortex.
Since only a small proportion of layer 3 pyramidal neurones project to the
caudate they would be less vulernable to such ischaemia and thus our
observation that changes are more pronounced in layer 5 is consistent with this
neuroanatomy.

 Other explanations for our findings are possible. It is unlikely that
neurodegenerative disease is a factor affecting the pyramidal neurones in our
sample because we excluded all individuals with any significant degenerative
disease, although a subtle effect cannot be entirely excluded. A loss of
trophic support for these neurones may be present since earlier studies have
implicated trophic factors, including brain-derived neurotropic factor.
Reference Duman19,Reference Evans, Choudary, Neal, Li, Vawter and Tomita20
 Another mechanism that could be involved is excessive
hypothalamic–pituitary–adrenal axis activation, which is present in major
depressive disorder in younger adults and continues into old age and tends to
become more severe.
Reference O'Brien, Ames, Schweitzer, Colman, Desmond and Tress21
 In this model the effects of elevated steroids may lead to pyramidal
neuronal atrophy, which has been proposed to explain the hippocampal atrophy
observed in depression.
Reference Sapolsky22



 As this was necessarily a cross-sectional study, it is possible that the
individuals with depression had smaller pyramidal neurones for many years.
Previous investigations in younger adults have reported a reduction in neuronal
volume in the anterior cingulate cortex layer 5b and 6,
Reference Cotter, Mackay, Landau, Kerwin and Everall17
 although this was not significant after stringent corrections for
multiple comparisons, in layer 3 of the orbitofrontal cortex
Reference Cotter, Hudson and Landau23
 and there were suggestions of smaller neurones reported in a study of
the orbitofrontal cortex and dorsolateral prefrontal cortex.
Reference Rajkowska, Miguel-Hidalgo, Wei, Dilley, Pittman and Meltzer6
 Thus, there may be a reduction in pyramidal volume beginning earlier in
the course of depression, which becomes more marked later in the illness. Such
a development would be consistent with the above vascular explanation since
white matter hyperintensities are present in younger adults with depression and
enlarge over time.
Reference Taylor, Steffens, MacFall, McQuoid, Payne and Provenzale24



 We also explored whether individuals with an early onset of their depressive
illness (first episode before 60 years) differed from those with a late onset
and did not find consistent evidence for such differences. Although categorical
comparisons using early-onset depression and late-onset depression groups and
the control group suggested some differences may be present, direct comparison
of the early-onset depression and late-onset depression groups revealed only
borderline differences and these were not supported by significant correlations
between age at depression onset and the various estimates, either in the whole
cortex or in laminae 3 and 5. Although our findings need to be interpreted with
caution, in the light of the small group numbers, they are consistent with
those of the previous study in late-life depression, which also did not
identify significant differences between early-onset depression and late-onset
depression, using the same age cut-off of 60 years.
Reference Rajkowska, Miguel-Hidalgo, Dubey, Stockmeier and Krishnan10



 Studies in younger adults with depression have consistently reported a
reduction in glial density. Although we found no group differences in glial
density, interpretation is complicated by reports of differences in glial
sub-populations, which would tend to cancel each other out. We and others have
reported an increase or no difference in astroglial density in late-life depression
Reference Miguel-Hidalgo, Baucom, Dilley, Overholser, Meltzer and Stockmeier5,Reference Davis, Thomas, Perry, Oakley, Kalaria and O'Brien25
 but a reduction in younger adults with depression
Reference Miguel-Hidalgo, Baucom, Dilley, Overholser, Meltzer and Stockmeier5
 and other studies report evidence of reductions in oligodendroglia in depression.
Reference Aston, Jiang and Sokolov26,Reference Hamidi, Drevets and Price27



 We believe the reduction in pyramidal neuronal volume in the dorsolateral
prefrontal cortex is likely to be because of depressive illness itself rather
than any confounding factors. As shown in Table 1, the two groups were well matched for important possible
confounders (e.g. age and tissue pH), which would not therefore have biased our
findings. Since the removal of outlying values for both the depression and
control groups (but not that for depression alone) reduced the pyramidal volume
difference to only a trend level the difference appears to be driven in part by
these outliers, although the removal of two controls also further reduces the
power of the analysis. Future studies need larger numbers, although this is
difficult to achieve, to reduce the effect of such outliers. Another possible
limitation is that although gender was not significantly different between our
groups, the higher proportion of females in the depression group may have
affected our findings. Inevitably, in such a study the groups were
systematically different in antidepressant medication use. However, we did not
find any significant difference (or trend to such a difference) in the volume
of pyramidal neurones in the whole cortex or in laminae 3 and 5, making the
influence of medication on our findings unlikely; this conclusion is consistent
with that of the previous late-life depression study in the orbitofrontal cortex.
Reference Rajkowska, Miguel-Hidalgo, Dubey, Stockmeier and Krishnan10
 As our study was performed in predefined, paraffin-embedded blocks, we
had to work with the limitations of such constraints that thus prevented a full
stereological analysis of the dorsolateral prefrontal cortex. As it was not
possible to sample the whole dorsolateral prefrontal cortex, it could be argued
that a bias may occur in the results because of the precise location of the
tissue obtained within the dorsolateral prefrontal cortex. Although impossible
to statistically verify, we are confident that readings were obtained from a
similar caudal position that did not differ between the groups.

 In conclusion, consistent with the only previous study in late-life depression
we have found further evidence of pyramidal neuronal changes that were more
marked in layer 5 of the dorsolateral prefrontal cortex and that were not
associated with any changes in the overall glial population or in non-pyramidal
neurones. These findings could be because of the influence of cerebrovascular
disease, especially that affecting the white matter which damages the axons of
the pyramidal neurones as they project to the caudate nucleus.
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 Table 1 Demographic, histopathological and clinical information for individuals with depression and controls
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 Fig. 1 Box plots of glial cell densities in layers of the dorsolateral prefrontal cortex.
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 Fig. 2 Box plots of neurone densities in layers of the dorsolateral prefrontal cortex.
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 Fig. 3 Scatter plots of neurone volume in layers of the dorsolateral prefrontal cortex.
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 Fig. 4 Box plots of glial cell densities in layers of the dorsolateral prefrontal cortex in early- and late-onset depression.
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 Fig. 5 Box plots of neurone densities in layers of the dorsolateral prefrontal cortex in early- and late-onset depression.
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 Fig. 6 Scatter plots of neurone volume in layers of the dorsolateral prefrontal cortex in early- and late-onset depression.
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