The Clinical Correlates of Neurological Soft Signs in Chronic Schizophrenia

D. J. KING, A. WILSON, S. J. COOPER and J. L. WADDINGTON

Among 16 chronic schizophrenic in-patients, all had at least one neurological soft sign (NSS), and 6 (40%) had definite neurodysfunction. NSS and TD scores were highly intercorrelated, and NSS were significantly correlated with neuroleptic drug exposure. NSS correlated positively with both positive and negative symptoms and cognitive impairment but not with cerebral ventricular size on CT. Patients with neurodysfunction had more positive and negative psychopathology, cognitive impairment and TD than those without. Cerebral ventricular sizes and family histories of schizophrenia were similar in both NSS groups. The presence of NSS may be a simple but important way of identifying a subgroup of schizophrenics with neurodevelopmental predisposing abnormalities, and vulnerability to TD.

Neurological soft signs (NSS) have been reliably documented in schizophrenia and occur with a reported prevalence of 50–60% (Heinrichs & Buchanan, 1988). Their significance, however, is unclear, and the correlation with other clinical abnormalities or outcome is variable (Kolakowska et al, 1985; Wegner et al, 1985). Nevertheless, NSS were the best single predictor of abnormalities in three modalities: neurological examination, electroencephalograph (EEG) and computerised tomography (CT) scan, in one study of 39 patients who underwent these three tests (Woods & Short, 1985). There has, however, been a surprising paucity of studies relating the occurrence of these signs to CT scan findings and two studies have been contradictory: Weinberg & Wyatt (1982) found an association with enlarged cerebral ventricles while Kolakowska et al (1985) did not. Furthermore, the presence of tardive dyskinesia (TD), which is increasingly suspected of indicating underlying predisposing organic factors (Waddington, 1987), has not always been taken into account in surveys of NSS. Finally, the role of neuroleptic medication continues to be debated. While the consensus view appears to be that these signs are not an artefact of medication (Mosher et al, 1971; Cox & Ludwig, 1979; Torrey, 1980; Woods et al, 1986; Liddle, 1987; Kolakowska et al, 1985) this has been challenged by Quitkin et al (1976) who, although finding no association with medication in the group of schizophrenics with most signs (those with pre-morbid asociality), did find such an association in the remaining mixed group of schizophrenics and continue to argue that this factor has not yet been adequately excluded (Quitkin et al, 1985).

Accordingly, we decided to study the extent and severity of NSS in a group of chronic schizophrenic in-patients who had had CT scans and also to relate these findings to the degree of psychopathology, cognitive impairment, TD, previous neuroleptic drug histories and family history of schizophrenia.

Method

A group of 16 chronic schizophrenic (DSM-III; American Psychiatric Association, 1980) in-patients (10 men, 6 women) who had had CT scans carried out as part of a previous study (King et al, 1985) were selected for study. Mean age of the group was 44.4 years (s.d. 12.2, range 30–68) and mean duration of illness 21.41 years (s.d. 10.64, range 5.3–41.2). The interval between the CT scan and this study ranged from two and a half to three years. The patients were examined for TD (by JLW & AW) on two occasions six months apart and on the second occasion they were also examined for the presence of NSS. TD was assessed using the Abnormal Involuntary Movement Scale (AIMS; National Institute of Mental Health, 1976) and 10 NSS: mirror movements, speech, right/left confusion, finger-to-thumb opposition, finger-to-thumb mirror movements, pronation-supination, foot tapping (right/left), face–hand (sensory inattention), graphesthesia and hopping (right/left), were derived from those used by Quitkin et al (1976), Torrey (1980) and Kolakowska et al (1985). They were rated on a three-point scale (0 absent; 1 present; 2 marked), so that the total possible range was 0–20. ‘Adventitious overflow’ was excluded from the Quitkin et al (1976) signs since it was indistinguishable from TD. At the time of the examination for NSS the patients were also assessed for psychopathology using the Krawiecka Rating Scale (KRS; Krawiecka et al, 1977) as modified by Johnstone et al (1978), which gives four positive symptoms (hallucinations, delusions, incoherence and emotional incongruity), two negative symptoms (poverty of speech and affective flattening) and three non-specific symptoms (depression, anxiety and psychomotor retardation), and cognitive function using the Withers & Hinton Test (1971). All available information on the current and lifetime
Table 1: Raw data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>Range</th>
<th>Mean</th>
<th>s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krawiecka (positive)</td>
<td>16</td>
<td>2-16</td>
<td>9.3</td>
<td>4.66</td>
</tr>
<tr>
<td>Krawiecka (negative)</td>
<td>16</td>
<td>2-8</td>
<td>4.9</td>
<td>1.69</td>
</tr>
<tr>
<td>Krawiecka (total)</td>
<td>16</td>
<td>5-28</td>
<td>17.4</td>
<td>7.00</td>
</tr>
<tr>
<td>Withers and Hinton</td>
<td>14</td>
<td>25-104</td>
<td>57.3</td>
<td>23.52</td>
</tr>
<tr>
<td>AIMS</td>
<td>16</td>
<td>0-22</td>
<td>6.4</td>
<td>8.76</td>
</tr>
<tr>
<td>NSS</td>
<td>15</td>
<td>1-14</td>
<td>6.87</td>
<td>4.19</td>
</tr>
<tr>
<td>VBR \times 100</td>
<td>16</td>
<td>5.0-19.7</td>
<td>9.76</td>
<td>3.541</td>
</tr>
</tbody>
</table>

Neuroleptic drug treatment:

- Current daily dose (mg/CPZ): 200-10000 (mean = 3223, s.d. = 3263.1)
- Duration (years): 3.2-26.5 (mean = 14.4, s.d. = 8.25)
- Total (g CPZ): 1069-11470 (mean = 4301, s.d. = 2846.0)

Table 2: Spearman correlation coefficients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Krawiecka score</th>
<th>Winters and Hinton</th>
<th>AIMS</th>
<th>NSS</th>
<th>VBR</th>
<th>Treatment (duration)</th>
<th>Treatment (total)</th>
<th>Treatment (current)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krawiecka (positive)</td>
<td>0.512*</td>
<td>0.912**</td>
<td>-0.602*</td>
<td>0.651**</td>
<td>0.765**</td>
<td>-0.001</td>
<td>0.581*</td>
<td>0.460*</td>
</tr>
<tr>
<td>Krawiecka (negative)</td>
<td>0.704**</td>
<td>-0.843*</td>
<td>0.476*</td>
<td>0.602*</td>
<td>0.138</td>
<td>0.292</td>
<td>0.340</td>
<td>0.291</td>
</tr>
<tr>
<td>Krawiecka (total)</td>
<td>-0.724**</td>
<td>0.556*</td>
<td>0.862**</td>
<td>0.021</td>
<td>0.518*</td>
<td>0.388</td>
<td>0.422</td>
<td></td>
</tr>
<tr>
<td>Withers and Hinton</td>
<td>-0.803**</td>
<td>-0.818**</td>
<td>-0.207</td>
<td>-0.223</td>
<td>-0.074</td>
<td>-0.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIMS</td>
<td>0.041</td>
<td>0.288</td>
<td>0.298</td>
<td>0.358</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>0.057</td>
<td>0.934**</td>
<td>0.228</td>
<td>0.435*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBR</td>
<td>0.270</td>
<td>-0.117</td>
<td>-0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment (duration)</td>
<td>0.324</td>
<td>-0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment (total)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05.

**P<0.01.
Comparisons between patients with neurodysfunction (2 or more neurological soft signs of marked degree) and those without

<table>
<thead>
<tr>
<th></th>
<th>Neurodysfunction Present</th>
<th>Neurodysfunction Absent</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=6)</td>
<td>(n=9)</td>
<td></td>
</tr>
<tr>
<td>mean (s.d.)</td>
<td>mean (s.d.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krawiecka (positive)</td>
<td>11.83 (7.33)</td>
<td>4.05 (4.06)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>6.17 (3.89)</td>
<td>(1.47) (1.05)</td>
<td>0.01</td>
</tr>
<tr>
<td>Krawiecka (negative)</td>
<td>21.33 (14.44)</td>
<td>4.97 (5.53)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>33.20 (70.67)</td>
<td>(5.67) (17.85)</td>
<td>0.001</td>
</tr>
<tr>
<td>AIMS</td>
<td>12.83 (2.78)</td>
<td>4.97 (6.17)</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>10.97 (9.00)</td>
<td>(6.79) (2.44)</td>
<td>NS</td>
</tr>
<tr>
<td>VBR > 100</td>
<td>47.22 (50.74)</td>
<td>21.33 (41.79)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(3221.58) (2879.98)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medication: current: mg CPZ 4894.50 (2326.33) NS
Duration: years 14.08 (13.82) NS
Total: g CPZ 4722.50 (4179.44) NS

* Mann-Whitney U test.

Table 4
Comparisons between patients with persistent tardive dyskinesia, transient tardive dyskinesia and with no tardive dyskinesia (Schooler & Kane criteria)

<table>
<thead>
<tr>
<th>Tardive dyskinesia</th>
<th>None (n=8)</th>
<th>Transient (n=4)</th>
<th>Persistent (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean (s.d.)</td>
<td>mean (s.d.)</td>
<td>mean (s.d.)</td>
<td></td>
</tr>
<tr>
<td>Krawiecka (positive)</td>
<td>7.0 (11.0)</td>
<td>12.25 (4.11)</td>
<td></td>
</tr>
<tr>
<td>Krawiecka (negative)</td>
<td>4.0 (5.25)</td>
<td>6.5 (1.51)</td>
<td></td>
</tr>
<tr>
<td>Krawiecka (total)</td>
<td>13.75 (19.5)</td>
<td>22.5 (7.48)</td>
<td></td>
</tr>
<tr>
<td>Withers and Hinton</td>
<td>77.0 (43.25)</td>
<td>30.0* (13.8)</td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>3.29 (9.5)</td>
<td>10.5 (1.60)</td>
<td></td>
</tr>
<tr>
<td>VBR > 100</td>
<td>9.3 (7.38)</td>
<td>13.05 (2.03)</td>
<td></td>
</tr>
<tr>
<td>Medication: current: mg CPZ 2149.88 (3710.75) 4881.00 (2294.40) (4121.03) (4005.40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>duration: years</td>
<td>12.48 (7.32) (10.15) (3.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total: g CPZ</td>
<td>3103.50 (5100.00) 5897.50 (899.19) (4377.80) (3372.53)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Different from both 'No TD' and combined (No TD and transient TD) groups, P<0.03.
2. Different from 'No TD' (P<0.02) and combined (P<0.006) groups.
3. Different from 'No TD' (P<0.006) and combined (P<0.04) groups.
4. Different from 'No TD' group, P<0.006.
5. Different from combined group, P<0.02 (Student’s t).

Cerebral ventricular size (VBR) did not correlate with any of the measured variables (Table 2). A significant difference was, however, found between the four patients with persistent TD and the rest (P<0.02) (Table 4), as previously reported elsewhere (Waddington et al, 1985).

Discussion

There are a number of inevitable limitations to a study of this size which means our conclusion must be tentative. Our numbers are small and therefore, although we can be confident in the positive findings of our non-parametric statistical analysis (such as the correlations between NSS, TD and cognitive impairment), a type II error may have reduced our chances of detecting other associations. There was also a delay between the CT scans of the 1985 study and the assessment of neurological status for the present study. There are very few serial CT scan studies in schizophrenia but what information is available suggests that our findings after up to a three-year interval are valid (Nasrallah et al, 1986; Weinberger, 1988). The information on neuroleptic drug exposure was collected from the patient’s case notes and while this suffers from inaccuracies due to incomplete records and patient compliance, we assume that these apply equally to all patients with similar diagnoses and lengths and numbers of admissions, and that there has therefore been no systematic bias.

Our patients were chronically and severely ill and all had at least one NSS. If criteria similar to Kolakowska et al’s (1985) had been applied (i.e. two signs ‘present’ or one sign ‘marked’) 13 of our 15 patients (86.7%) would have had some degree of neurodysfunction. Using our more stringent criteria we found six (40%) of our patients had definite clinical signs of neurodysfunction. The reported prevalence of NSS varies widely, from 29% to 80% (Cadet et al, 1986), but our findings are similar to those reported by Torrey (1980; 49%), Kolakowska et al, (1985; 46%) and Woods & Short (1985; 58%). The latter authors found a much lower incidence (19%) if signs putatively attributable to age, medication or cognitive impairment were excluded.

We have confirmed a strong association with cognitive deficit in agreement with several previous reports (Mosher et al, 1971; Quitkin et al, 1976; Kolakowska et al, 1985; Liddle, 1987). We have also found a high degree of correlation between NSS and TD, unlike Kolakowska et al (1985), but in agreement with Wegner et al (1985) and Marsalek et al (1988), and Youssef & Waddington (1988) who found a higher incidence of primitive reflexes in patients with TD. While both TD and NSS were correlated with both positive and negative schizophrenic...
symptoms (Table 2) and patients with neurodysfunction had significantly more positive and negative symptoms than those who did not (Table 3). Patients with persistent TD had significantly more negative but not positive symptoms than those who did not (Table 4). The close association between NSS and severity of psychopathology is in agreement with Mosher et al. (1971) and Keshavan & Yeragani (1987). The latter further noted that in longitudinal studies a fluctuation in the appearance of primitive reflexes occurred with episodes of psychosis.

Those with a family history of schizophrenia could not be distinguished from those without such a history on any of the measured variables, which does not support a familial/sporadic distinction (Murray et al., 1985), but our numbers may have been too small to detect this. Although the VBR in our total group of patients was significantly greater than their age-matched controls (P < 0.001) (King et al., 1985), there was only one significant within-group difference in VBR with respect to the other variables measured in the present study: the presence or absence of persistent TD (Table 4). The general lack of correlation between VBR and other clinical variables, apart from TD, is consistent with several other recent reports (Williams et al., 1985; Owens et al., 1985; Romani et al., 1987; Smeraldi et al., 1987).

There was a trend for an association between NSS and neuroleptic medication (Table 2). It is possible, however, that the association with duration of treatment could be because NSS were commoner and more marked in early-onset cases (Torrey, 1980; Woods et al., 1986), and that the association with current medication was due to increased treatment in patients with more severe psychopathology (with which NSS were also correlated). Furthermore, there was no significant difference in the neuroleptic exposure between those patients with and those without neurodysfunction (Table 3). Unfortunately, there were inadequate numbers in this study for a multivariate analysis which is required to control for the intercorrelations between these factors. Accordingly, in agreement with Quitkin et al. (1985), we are unable to exclude some influence of medication in the appearance of these signs.

The significance of NSS in schizophrenia is unclear. Some of the motor disturbances involved have been attributed to bradykinesia. Although this was not formally quantified in the present study, none of the patients had any clinically significant extrapyramidal signs, nor did the retardation score on the KRS differ between the patients with neurodysfunction and those without. NSS have been reported to reflect fronto-parietal (Cox & Ludwig, 1979) and fronto-temporal (Taylor & Abrams, 1984) abnormalities. Liddle (1987) thought that three separate schizophrenic syndromes could be distinguished by different symptom clusters and were associated with different patterns of cognitive deficit. He found that the two frontal lobe syndromes, the disorganisation syndrome (inappropriate affect, poverty of content of speech and thought disorder) and the psychomotor poverty syndrome (poverty of speech, decreased spontaneous movement and affective blunting) were associated with NSS, but that the temporal lobe syndrome – reality distortion (delusions and hallucinations) – was not. A high prevalence of ‘harder’, localising signs has also been found in both schizophrenics (Woods et al., 1986) and their relatives (Kinney et al., 1986). In spite of one report to the contrary (Cox & Ludwig, 1979), however, they do not appear to be specific for schizophrenia (Walker, 1981; Nasrallah et al., 1982; Woods et al., 1986; Gureje, 1988) and probably reflect diffuse cerebral dysfunction (Keshavan & Yeragani, 1987; Youssef & Waddington, 1988). Although there appears to be some fluctuation with severity of symptoms (Keshavan & Yeragani, 1987), there is increasing evidence from longitudinal studies of children at high risk for schizophrenia that early neuro-integrative deficits antedate and predispose to subsequent psychosis (Erlenmeyer-Kimling et al., 1982). A neurodevelopmental hypothesis of schizophrenia has recently been elaborated by Murray & Lewis (1987) and Murray et al. (1988).

Our demonstration of a strong association between NSS and both TD and cognitive impairment in chronic schizophrenic patients emphasises the importance of a full neurological examination in psychotic patients (Woods & Short, 1985). Although unlikely to be of value in predicting outcome or response to treatment (Kolakowska et al., 1985), our findings suggest that NSS may be an important clinical means of identifying a subgroup of patients with neurodevelopmental predisposing factors which may have both genetic (Kinney et al., 1986) and environmental (Murray & Lewis, 1987; Cooper & King, 1987) origins, and the strong association with TD suggests that their presence might be of value in predicting vulnerability to TD.

Acknowledgement
We are indebted to the patients and nursing staff of Holywell Hospital, Antrim, for their help and co-operation throughout this study.

References
clinical neurological examination in schizophrenia. In The
Neurology

COOPER, S. J. & KONG, D. (1987) Is schizophrenia a neuro-

COX, S. M. & LUDWIG, A. M. (1979) Neurological soft signs and
psychopathology. I. Findings in schizophrenia. Journal of
Nervous and Mental Disease, 167, 161–165.

DAVID, J. M. (1976) Comparative doses and costs of anti-

Neurological, electrophysiological, and attentional deviations in
children at risk for schizophrenia. In Schizophrenia as a Brain
Disease (eds F. A. Henn & H. A. Nasrallah), pp. 61–98. Oxford:
Oxford University Press.

meaning of neurological signs in schizophrenia. American Journal of Psychiatry, 145, 11–18.

Mechanism of the antipsychotic effect in the treatment of acute
schizophrenia. Lancet, i, 848–851.

KESHAVAN, M. S. & YERAGANI, V. K. (1987) Primitive reflexes in

Serum and CSF antibody titres to seven common viruses in

soft signs, cognitive impairment and their clinical significance.
Lancet, ii, 1264.

Schizophrenia with good and poor outcome. III. Neurological
’soft’ signs, cognitive impairment and their clinical significance.

Schizophrenia with good and poor outcome. II. Neurologic and psychiatric findings in relatives.
Archives of General Psychiatry, 43, 665–668.

psychiatric assessment scale for rating chronic psychotic patients.

and neurological dysfunction. Psychological Medicine, 17, 49–57.

brain vulnerability in tardive dyskinesia. Schizophrenia Research, 1, 231.

MOSSER, L. R., POLLIN, W. & STABENAU, J. R. (1971) Identical
twins discordant for schizophrenia. Neurological findings.
Archives of General Psychiatry, 24, 422–430.

MURRAY, R. M., LEWIS, S. W. & REVELLY, A. M. (1985) Towards an
actiological classification of schizophrenia. Lancet, i, 1025–1026.

—— & ——— (1987) Is schizophrenia a neurodevelopmental

Neurological soft signs in manic patients: A comparison with

Cerebral ventricular enlargement in schizophrenia. Archives of
General Psychiatry, 43, 157–159.

NATIONAL INSTITUTE OF MENTAL HEALTH (1976) Abnormal involuntary

Lateral ventricular size in schizophrenia: relationship to the
disease process and its clinical manifestations. Psychological Medicine, 15, 27–41.

in schizophrenia and character disorders. Archives of General Psychiatry, 33, 845–853.

measure of smooth pursuit eye movements and vestibulo-
brain ratio in schizophrenic disorders. Psychiatry Research, 21, 293–301.

and clinical effect of two different concentrations of haloperidol

TORKER, E. F. (1980) Neurological abnormalities in schizophrenia
patients. Biological Psychiatry, 15, 381–388.

WADDINGTON, J. L. (1987) Tardive dyskinesia in schizophrenia and
other disorders: associations with ageing, cognitive dysfunction

receptors and ageing: dopamine/neuroleptic receptors, involuntary movements and the disease

WALKER, E. (1981) Attentional and neuromotor functions of
schizophrenics, schizoaffective, and patients with other affective

WEIDNER, J. T., CATALANO, F., GHIRALDI, J., et al (1985) Schizoph-
rophrenia with tardive dyskinesia: neuropsychological deficit and

WEINBERGER, D. R. (1988) Premorbid neuropathology in schizo-

—— & WYATT, R. J. (1982) Cerebral ventricular size: a
biological marker for sub-typing chronic schizophrenia. In

Schizophrenia with good and poor outcome. II: Cerebral ventricular

WITHERS, E. & HINTON, J. (1971) Three forms of the clinical tests

WOODS, B. T. & SHORT, M. P. (1985) Neurological dimensions of

abnormalities in schizophrenic patients and their families. I. Comparison of schizophrenic, bipolar and substance abuse
patients and normal controls. Archives of General Psychiatry, 43, 657–663.

YOUNSF, H. A. & WADDINGTON, J. L. (1988) Primitive (develop-
mental) reflexes and diffuse cerebrodysfunction in schizophrenia
and bipolar affective disorder: over-representation in patients
*D. J. King, MD, FRCPsych, DPM, Reader, Department of Therapeutics and Pharmacology, The Queen's University of Belfast, and Consultant Psychiatrist, Holywell Hospital, Antrim; A. Wilson, MD, MRCPsych, Senior Registrar, Department of Mental Health, The Queen's University of Belfast; S. J. Cooper, MD, MRCPsych, Senior Lecturer, Department of Mental Health, The Queen's University of Belfast; J. L. Waddington, MA, MSc, PhD, Reader, Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin

*Correspondence: Department of Therapeutics and Pharmacology, The Whiila Medical Building, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
The clinical correlates of neurological soft signs in chronic schizophrenia.
D J King, A Wilson, S J Cooper and J L Waddington
Access the most recent version at DOI: 10.1192/bjp.158.6.770