Evolving model of depression as an expression of multiple interacting risk factors†

VERONICA O’KEANE

Our understanding of how stress alters our physiology to produce a state that resembles clinical depression is germane to the evolving model of depression as an expression of multiple interactive risk factors. The concept of depression has moved from one where ‘endogenous’, or genetic, risk factors and ‘reactive’, or environmental, risk factors were thought to be unrelated and to define a particular clinical syndrome to one where these risk factors are seen as additive, and interacting with developmental risk factors. The study published in this issue by Goodyer et al (2000) examines the contribution of developmental, environmental and physiological risk factors in adolescent depression.

HYPOTHALAMIC–PITUITARY–ADRENAL AXIS AND DEPRESSION

Different stressors activate selective stress responses in the body but the most commonly activated and the most researched of these systems is the hypothalamic–pituitary–adrenal (HPA) axis. Overdrive of this system is associated with the depressed state (Gold et al, 1988). There is a consensus that major depressive disorder (MDD), and particularly the melancholic subtype, is associated with corticotropic-releasing hormone (CRH) hypersecretion and subsequent HPA axis overdrive. Hypercortisolaemia states produce many of the symptoms and behaviours associated with depression, as demonstrated by the affective syndromes that generally accompany Cushing's syndrome (Dorn et al, 1995). These behavioural effects are brought about by the binding of cortisol to nuclear receptors in the brain, most densely concentrated in the hippocampus, and the subsequent activation of transcriptional activity (McEwan et al, 1992). Many biological and cognitive processes are modified by cortisol, including sleep, appetite, libido, energy, motivation, concentration and memory (Martignoni et al, 1992).

Little is known of the mechanism of activation of the HPA axis following psychological stress but it may involve the stress neurotransmitters 5-hydroxytryptamine (5-HT) or noradrenaline (NA). Stimulation of either of these neurotransmitter systems results in CRH release from the hypothalamus and subsequent release of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland. The mechanism of HPA axis activation following physical trauma involves cytokine-mediated stimulation of CRH (Raber et al, 1997). Cytokines are released following tissue injury and as part of the inflammatory/immune response. Some workers in the field of psychoimmunology, however, would invoke cytokines in the mechanism of activation of the HPA axis following psychological events (Mohr et al, 1999). That there are several means of activating the hypothalamic secretion of ACTH secretagogues goes some way to explaining an individual’s diathesis to developing depressive syndromes following particular adverse events.

DEVELOPMENTAL, ENVIRONMENTAL AND GENETIC RISK FACTORS

There is evidence to suggest that this diathesis is associated with abnormal HPA axis responses. This may be a genetic vulnerability or may come about as a result of stress during critical periods of brain development. Experiments in rats demonstrate that adult rats that have been subjected as pups to psychological stress, such as maternal separation, non-handling or early immune challenge, demonstrate exaggerated HPA axis responses to stress (Ladd et al, 1996). The non-handled rats also demonstrate many of the behavioural characteristics associated with animal models of depression, such as reduced exploration of novel environments. These behavioural and endocrine responses to stress are stable over time and appear to be mediated by glucocorticoid receptor density in the hippocampus. HPA axis hypersecretion is inhibited by a negative feedback process, whereby the elevated cortisol levels act on glucocorticoid receptors, primarily in the hippocampus, to decrease the synthesis of CRH. Reduced receptor availability in the hippocampus thus leads to attenuated inhibition, and therefore hyper-responsivity, of the HPA axis. Glucocorticoid receptor density in the hippocampus is determined largely during the first 3 weeks of a pup’s life and non-handling during this critical period leads to reduced glucocorticoid receptor density. These animal studies underlie the importance of examining HPA axis function in stressed young adults.

An animal model of psychological stress that approximates more closely to human social stressors involved housing the Macaca fascicularis monkey in social groups that were either stable or were repeatedly destabilised by changing of group membership (Brooke et al, 1994). Animals from unstable groups were twice as likely as animals coming from the stable groups to have resistance to the suppressive effects of dexamethasone. Dexamethasone-resistant animals had significantly fewer glucocorticoid receptors in their hippocampi. These results suggest a model linking sustained stress with hypercortisolaemia and consequent reduction of glucocorticoid receptors in the hippocampus.

There are few experiments in humans examining the effects of stress in childhood on HPA axis responses. A recently published study has demonstrated that HPA axis responses to stress are altered by the mode of delivery (Taylor et al, 2000). This study found that salivary cortisol responses to the stress of inoculation at 8 weeks post-delivery were increased in neonates who had assisted deliveries compared to those delivered by elective caesarean section. De Bellis et al (1994) compared ACTH and cortisol responses to CRH in teenage girls who had been sexually abused in childhood to age-matched control girls. The test

†See pp. 499–510, this issue.
CONCLUSION

Our knowledge of the interaction of risk factors in adolescent depression has been advanced by this study. Following this group into adulthood will provide invaluable information on the evolution of these stress syndromes in these vulnerable individuals. Whether psychological interventions, such as cognitive–behavioural therapy, could modify these responses in a sustainable way is one of the key questions that remains to be answered. Studies such as this, spanning the disciplines of neuroendocrinology, epidemiology and psychology, are required if we wish to advance our understanding of depression. It is not always possible to measure these risk factors in such an exact way but future studies should attempt to incorporate measurement of these variables in study designs. Examining depression from a purely epidemiological, psychological or biological viewpoint can only yield a limited view on the complex and diverse syndrome of MDD.

REFERENCES


Evolving model of depression as an expression of multiple interacting risk factors
VERONICA O’KEANE
BJP 2000, 177:482-483.
Access the most recent version at DOI: 10.1192/bjp.177.6.482

References
This article cites 11 articles, 1 of which you can access for free at:
http://bjp.rcpsych.org/content/177/6/482#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;177/6/482

Downloaded from http://bjp.rcpsych.org/ on July 12, 2017
Published by The Royal College of Psychiatrists