Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression

Functional magnetic resonance imaging study

K. A. SMITH, A. PLOGHAUS, P. J. COWEN, J. M. McCLEERY, G. M. GOODWIN, S. SMITH, I. TRACEY and P. M. MATTHEWS

Background Subjects recovered from depression have a substantial risk for recurrence of depression, suggesting persistent abnormalities in brain activity.

Aims To test whether women recovered from depression show abnormal brain activity in functional magnetic resonance imaging (fMRI) during a conditioning paradigm with a noxious pain stimulus.

Method Ten unmedicated women who had recovered from major depression and eight healthy control women each received either noxious hot or non-noxious warm stimuli, the onset of which was signalled by a specific coloured light during 3-tesla echo planar imaging-based fMRI.

Results Similar patterns of brain activation were found during painful stimulation for both patients and healthy controls. However, relative to healthy controls, subjects recovered from depression showed a reduced response in the cerebellum during anticipation of the noxious stimulus compared with anticipation of the non-noxious stimulus.

Conclusions Our data suggest that abnormal cerebellar function could be a marker of vulnerability to recurrent depression. This could provide a new target for therapeutic interventions.

Declaration of interest Supported by the Medical Research Council (MRC) (P.M.M.). P.J.C. is a MRC Clinical Scientist. J.M.McC. was a Welcome Training Fellow.

Depression is a common disorder (Blazer *et al.*, 1994) and recurrent depression is a major cause of disability (Hays *et al.*, 1995). Whereas personal and psychosocial risk factors for the development of depression have been elucidated (Kendler, 1998), the neurobiological mechanisms involved in mediating vulnerability have not been well defined. Study of conditioned responses to aversive stimuli allows investigation of the neural circuits related to emotional experiences (Buchel *et al.*, 1998; LaBar *et al.*, 1998; Morris *et al.*, 1998) and we previously have adapted approaches to allow dynamic monitoring of responses to thermal pain and its anticipation using functional magnetic resonance imaging (fMRI) (Ploghaus *et al.*, 1999). Given the recognised potential for conditioning responses to define traits relevant to depression (Eysenck *et al.*, 1976), we have employed our fMRI conditioning paradigm to contrast responses of healthy controls with those of subjects who had a history of recurrent depression and who had made a full recovery and were off antidepressant medication in an effort to identify a potential marker of vulnerability to depression.

METHOD

Subjects Eighteen right-handed women underwent fMRI. Ten of these had a history of recurrent major depressive disorder and had suffered at least two episodes of DSM-IV depressive disorder (American Psychiatric Association, 2001) but had been recovered and off medication for at least 6 months. The remaining eight subjects (healthy controls) had no history of psychiatric disorder and were medication-free. Psychiatric history and current state were assessed at interview using the Structured Clinical Interview for DSM-IV (Spitzer *et al.*, 1987). Current depressive symptomatology was assessed with the Beck Depression Inventory (BDI; Beck *et al.*, 1961).

Behavioural procedure

A Peltier thermode was used to apply thermal stimuli to the dorsum of the left hand, as described previously (Ploghaus *et al.*, 1999). Stimulus intensities were chosen with the subject in the scanner, and for each subject individually; two stimuli that were consistently described by the subjects as ‘painfully hot’ and ‘clearly warm, but not hot’ were chosen. Three coloured light-emitting diodes (LEDs) (red, green, blue) were mounted at the subjects’ feet and could be viewed through a mirror in the magnet bore. During the experiment, subjects received seven noxious and seven comfortable warm stimulations in pseudo-random order. Each type of stimulation was signalled consistently by a certain colour LED for each subject, randomised across subjects (Fig. 1). The coloured LED signals preceded the onset of thermal stimulation by a pseudo-randomly varied interval with a mean of 7.5 s (s.d.=5 s) and stayed on during thermal stimulation, which was applied for 11 s. Between conditioning trials subjects had a rest period that also was pseudo-randomly varied (mean duration=26.5 s, s.d.=9 s) and signalled by the third coloured LED. Subjects were instructed to work out the contingency between LED colour and thermal stimulation.

Subjects rated their mood before the experiment, immediately after (in the scanner) and at the end of the scan using visual analogue rating scales. After the experiment, subjects rated the two thermal stimuli on intensity and unpleasantness using a 7-point modified form of the McGill pain scale (Melzack, 1975). Neuroticism was assessed at baseline using the Eysenck Personality Questionnaire (Eysenck *et al.*, 1985).

Data acquisition

We used a 3-tesla Varian INOVA magnetic resonance imaging system (Palo Alto, CA, USA) with a multislice gradient echo planar imaging (EPI) sequence (repetition time, TR=3000 ms, echo time, TE=30 ms, flip angle=90°, field of view, FOV=256 mm², matrix=64², 21 6-mm axial slices). We also acquired a high-resolution T1-weighted anatomical scan for each subject.
Image processing and statistical analysis

Image analysis was performed within MEDEX (Sensor Systems, Inc., Sterling, VA, USA). Each subject’s data was first motion corrected using AIR (http://www.loni.ucla.edu/NCRR/Software/AIR.html), spatially filtered using a Gaussian kernel of full width at half maximum of 5 mm, global (volumetric) mean intensity normalised, and high-pass filtered (period = 180.0 s). Statistical analysis was then carried out using FMRI’s Easy Analysis Tool (FEAT) (www.fmrib.ox.ac.uk/fsl) to localise regions of significant change. Differences in signal responses to noxious pain and comfortable warm stimulations were localised, as were differences in their preceding anticipation periods, during the conditioning experiment. The parameter estimate images for each subject were warped into the Montreal Neurological Institute 152 average brain space using FMRI’s Linear Image Registration Tool (FLIRT) and a random-effects statistic was used to generate group Z-statistic images. Cluster detection was applied to the group Z-statistic images (Z > 2.3, P < 0.1; Poline et al., 1997).

RESULTS

Subject characteristics

There were no significant differences in age between the two groups. As expected, the subjects recovered from depression had a higher overall rating of neuroticism. BDI scores were also higher in this group, although all BDI scores were within the normal range (Table 1).

Ratings of mood and experience of pain

There were no significant differences between groups in ratings of mood or of the intensity or affective quality of the painful and warm stimuli. There were also no differences between groups for visual analogue ratings of happy, sad and anxious (data not shown). Interviews after the experiment confirmed that all subjects learned the correct relation between the coloured light cues and the temperature of the subsequent thermal stimulation (noxious heat or warm).

Neuroimaging results

A contrast of responses during noxious heat stimulation in both groups showed activations in brain regions previously reported in neuroimaging studies of pain (Table 2 & Fig. 2). No significant differences in activation extent, magnitude or localisation, or site of activation were found between the control group and the recovered depression subjects.

To investigate differences between the two groups in activation to noxious heat and non-noxious warm stimulation during the conditioning period, an analysis was performed comparing activation during anticipation of painful stimulation with activation during anticipation of non-noxious warm stimulation for the two groups. Direct contrast identified significant differences between controls and subjects recovered from depression in the lateral cerebellum and the cerebellar vermis (Fig. 3). Direct measurement of the absolute signal intensities revealed a higher cerebellar response with anticipation of pain relative to warmth (mean signal intensity increase in group images, 0.4%) in the controls relative to those recovered from depression (mean signal intensity increase, 0.0%).

A possible confound could have been greater movement during scanning by the subjects recovered from depression, which...
DISCUSSION

Neuroticism, depression and classical conditioning

Not unexpectedly, the group that had recovered from depression showed greater neuroticism than the healthy controls. Neuroticism is a known risk factor for depression and subjects with a history of major depression have an increased risk of experiencing further episodes (Kendler, 1998). This conclusion is supported by theories of classical conditioning (Eysenck et al, 1976; Graeff et al, 1996).

Responses to pain and its anticipation

The conditioning model employed here has been used previously with normal volunteers to distinguish brain regions involved in the processing of pain and its anticipation (Ploghaus, 1999). Patients recovered from depression were similar to controls in their responses to thermal pain; this is not unexpected, as the groups did not report differences in the conditioning response or pain perception. However, there was a significant difference in processing the anticipation of the noxious heat relative to the non-noxious warm stimulus; subjects recovered from depression had a reduced response in the cerebellum. This was noted both in the cerebellar vermis and right hemisphere.

The cerebellum and emotional processing

Lateral cerebellar activation in healthy controls during the thermal pain conditioning task was noted in our previous study (Ploghaus et al, 1999) but it was unclear whether this represented part of a motor-related response (e.g. suppression of hand withdrawal) or was an intrinsic element of the primary conditioned response to pain. The cerebellum clearly plays a cognitive role in forms of conditioning, potentially consistent with the latter hypothesis (Schmahmann, 1997).

Previous studies have suggested that the cerebellum could show functional abnormalities in patients with depression. A single photon emission computed tomography (SPECT) study of patients with depression showed increased cerebellar blood flow after antidepressant treatment (Halloran et al, 1999). Such changes could be related to specific elements within the
broader spectrum of symptoms of depression. For example, as anxiety levels increase in patients with depression, cerebellar glucose metabolism decreases (Osch et al, 2000). In addition, subjects with depression show attenuated activation of the cerebellum during the Tower of London planning task (Elliott et al, 1997). Both of the latter observations would be consistent specifically with our observation of a decreased response in those recovered from depression.

Modulation of cerebellar circuits by depression is also given credence by studies suggesting a role for the cerebellum in emotional processing (Rapport et al, 2000). There are extensive anatomical and functional connections between the cerebellum and limbic structures, including the hippocampus and amygdala (Heath et al, 1978). Stimulation of the cerebellum, particularly the vermis, can reduce aggression and produce pleasure reactions in animals. In humans, acute stimulation of the cerebellum can induce emotional states, including fear and anxiety, whereas chronic stimulation appears to reduce anxiety and depression (Cooper et al, 1978). Induction of sadness in healthy volunteers is associated with increased blood flow in the cerebellar vermis (Mayberg et al, 1999).

Implications for the pathophysiology of depression

Subjects recovered from depression have a substantial risk for recurrence (Kendler, 1998). From our results and those of others, it appears that patients recovered from depression have a number of differences in brain function relative to healthy controls (Goodwin, 1996). We have shown a specific difference in brain activity during a conditioning response to a noxious v. a non-noxious stimulus. This difference could be more than simply a marker or ‘scar’ from the previous illness. A persistent processing abnormality of this kind could contribute to making subjects that have recovered from depression more vulnerable to abnormal mood regulation in the presence of aversive stimuli, as might occur, for example, during stressful life circumstances. If confirmed in a larger group, such a difference could help to identify those at risk of recurrent depression. Our observations suggest further that treatments modifying brain networks involved in conditioning responses to noxious stimuli could provide useful strategies for the treatment of depression.

REFERENCES

Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression: Functional magnetic resonance imaging study

KATHARINE A. SMITH, ALEXANDER PLOGHAUS, PHILIP J. COWEN, JENNY M. McCLEERY, GUY M. GOODWIN, STEPHEN SMITH, IRENE TRACEY and PAUL M. MATTHEWS

Access the most recent version at DOI: 10.1192/bjp.181.5.411

References

This article cites 20 articles, 3 of which you can access for free at:
http://bjp.rcpsych.org/content/181/5/411#BIBL

Reprints/permissions

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;181/5/411

Downloaded from
http://bjp.rcpsych.org/ on April 12, 2017
Published by The Royal College of Psychiatrists