Depression in men attending a rural general practice: factors associated with prevalence of depressive symptoms and diagnosis

CHRISTOPHER SHIELS, MARK GABBAY, CHRISTOPHER DOWRICK and CHRISTOPHER HULBERT

Background  Doctors are less likely to diagnose depression in men than in women. Little research has been conducted to explore the underlying reasons for this in rural settings, or to compare primary care doctors’ and male patients’ ratings of perceived depression.

Aims  To identify symptomatic and socio-demographic correlates of depression in men attending a rural practice, and to compare and contrast general practitioners’ and patients’ assessments of depression.

Method  All male patients of working age attending a rural general practice over a 12-month period were invited to participate.

Results  Men reporting recent ‘chest pain’ or ‘feeling tired/little energy’, expressing low job enjoyment or with a previous diagnosis of depression were more likely to be scored above threshold on the Hospital Anxiety and Depression Scale – Depression sub-scale. There was little agreement between the doctors and their male patients about the degree of perceived depression.

Conclusions  Educational interventions aimed at addressing the diagnosis of depression in men should take greater account of factors within a particular social setting.

Declaration of interest  C.H. is a principal in the general practice in which the study took place.

It has been estimated that nearly a fifth of the UK population will experience depression at some time (Angst, 1997). Although up to three-quarters of those with severe symptoms may seek help from their general practitioner, there is evidence of underdiagnosis of this problem and non-evidence-based clinical management (Davidson & Meltzer-Brody, 1999; Anderson et al, 2000). Rates of diagnosed depression in men are lower than rates in women (Meltzer et al, 1995), but there has been little research investigating how living in rural or urban settings mediates the reporting of depression by men (Paykel et al, 2000; Ayuso-Mateos et al, 2001) or whether the particular social setting has specific risk factors for residents or influences how primary care doctors interpret and manage depression (Chew-Graham et al, 2002). Specific aims of this study were first, to identify significant symptomatic and socio-demographic correlates of depression in men attending a rural general practice, and second, to compare and contrast doctor and patient assessments of depression.

METHOD

Setting  The study was conducted at a general practice in a relatively prosperous rural area of Cheshire, with a mean registered patient Townsend social deprivation score (computed from registration addresses) of −3.2. No patient scored higher than 0 on the Townsend index. The patient list at data collection commencement totalled 5272, including 1909 men of working age (16–65 years), two-thirds of all male patients registered with the practice. During the study period, three principals and an assistant general practitioner were working at the practice. The practice area meets recognised criteria for ‘rurality’ (not linked to a population centre >15 000 and over 20% of its working population employed in agriculture, fisheries or forestry; Rousseau, 1995).

Study design  Following approval of the study by Chester District Ethics Committee, all male patients of working age attending a general practice appointment over a 12-month period (1997–1998) were approached to take part in the study. Those agreeing to participate were given an information sheet and a consent form, and issued with a baseline health and well-being questionnaire to complete before seeing the doctor. Each general practitioner seeing a study participant completed a separate assessment form following the index consultation. In addition, relevant data items were collected from the practice record.

Three forms were used to collect baseline data:

(a) The self-administered health and well-being questionnaire encompassed demographic details, the Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) and a six-point Likert scale on which patients rated their perceived level of depression (higher scores indicated greater depression).

(b) The general practitioner’s assessment form recorded the doctor’s opinion of the patient’s psychological state at the index consultation and included the same Likert depression scale used in the patient questionnaire.

(c) The patient data form was used to record information from the patient’s practice notes relating to the number and types of consultations in the 12-month period before the index consultation, use of mental health services, hospital admissions, long-standing physical illnesses, previously diagnosed mental disorders, prescribed antidepressant medications and period of any certified sickness in the previous year.

The Hospital Anxiety and Depression Scale was initially developed as a tool for identifying cases of anxiety and depression among patients in non-psychiatric clinics (Zigmond & Snaith, 1983). Each subscale – one measuring anxiety (HADS-A) and the other depression (HADS-D) – contains seven items and has a maximum computed score of 24. A review of studies testing the validity of the HADS (Bjelland et al, 2002) confirmed that the optimisation
of sensitivity and specificity of both HADS–A and HADS–D for screening cases was achieved at a case cut-off score of 8 or more (as used in this study). The review concluded that the instrument performed well in screening for the separate dimensions of anxiety and depression in somatic, psychiatric and primary care patients, and in the general population ( Bjelland et al, 2002).

We investigated associations between HADS–D ‘caseness’ and both patient-reported variables (physical symptoms and socio-demographic factors) and secondary clinical data collected from patient records. We also compared the extent of agreement between doctor and patient Likert scale depression ratings, and between doctors’ assessments and a caseness rating on the HADS–D. The validity of the doctor and patient assessments of depression in predicting HADS–D caseness was also tested.

Statistical analysis

For investigating differences between the groups of patients categorised as ‘cases’ and ‘non-cases’ on the basis of the HADS–D cut-off score, we applied univariate statistical tests. For continuous variables such as age, the independent samples t-test was used to test for significant differences between the two patient groups. For the dichotomous categorical variables (e.g. symptom reported or not), we used the chi-squared test to detect any significant associations between the variable and HADS–D caseness. We constructed a logistic regression model in order to test for independent effects of patient factors upon risk of HADS–D caseness. Only significant factors from the univariate analysis stage were included as potential explanatory covariates in the regression model.

In order to allow meaningful comparison of doctors’ and patients’ assessments, ratings on the Likert depression scales were collapsed into dichotomous measures. A score above 2 (the mid-point on the scale) was assumed to indicate a degree of perceived depression. The technical justification for doing so was to construct $2 \times 2$ tables enabling calculation of simple unweighted kappa coefficients to express agreement between patient and doctor on the rating of depression. Also, the construction of such tables was a prerequisite for testing the validity of the dichotomous assessment measures in predicting HADS–D cases. For each measure, we report statistics relating to sensitivity, specificity, and positive and negative predictive tests.

Only patients consulting one of the three principal practice doctors or the assistant general practitioner were included in the analyses of agreement and validity. Patients seen by a locum doctor ($n=179$) were excluded from this part of the study. No statistically significant difference was found between locum patients and the other patients in relation to age or HADS–D score.

Data were analysed using the Statistical Package for the Social Sciences, SPSS for Windows version 10.

RESULTS

Response rate

During the year of the study, 982 men of working age attended the surgery, of whom 92% (901 patients aged 20–64 years) consented to participate and completed the health and well-being questionnaire. Compared with the participants, patients who did not give consent were significantly older (mean age 49.5 v. 44.0 years; t=3.9, d.f.=890, P=0.001), more likely to have a chronic physical illness or handicap (30.9% v. 20.7%; $x^2=4.6$, d.f.=1, P=0.03) and to have had a period of sickness certification greater than 3 months in the previous year (17.3% v. 9.2%; $x^2=5.4$, d.f.=1, P=0.02). They were less likely to have a record of previous depression (11.1% v. 20.2%; $x^2=3.9$, d.f.=1, P=0.04).

Patient factors and HADS depression cases

In this study, depression cases were defined by a score of 8 or more on the HADS–D self-assessment scale. The prevalence rate

Table I Demographic characteristics of the study sample

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All patients</th>
<th>HADS–D non-cases</th>
<th>HADS–D cases</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of patient, years: mean</td>
<td>44.0</td>
<td>44.1</td>
<td>43.9</td>
<td>t=0.13, d.f.=896, P=0.90</td>
</tr>
<tr>
<td>Number of consultations in previous 12 months: mean</td>
<td>2.3</td>
<td>2.0</td>
<td>2.4</td>
<td>t=1.39, d.f.=896, P=0.17</td>
</tr>
<tr>
<td>In paid work, %</td>
<td>86.3</td>
<td>87.5</td>
<td>78.9</td>
<td>$x^2=6.6$, d.f.=1, P=0.01</td>
</tr>
<tr>
<td>Works in agricultural sector, %</td>
<td>24.9</td>
<td>25.7</td>
<td>19.8</td>
<td>$x^2=1.6$, d.f.=1, P=0.21</td>
</tr>
<tr>
<td>Enjoys job most or all of time, %</td>
<td>82.1</td>
<td>86.2</td>
<td>54.6</td>
<td>$x^2=57.2$, d.f.=1, P=0.0001</td>
</tr>
<tr>
<td>Lives in rented property, %</td>
<td>20.4</td>
<td>18.9</td>
<td>27.8</td>
<td>$x^2=5.3$, d.f.=1, P=0.02</td>
</tr>
<tr>
<td>Lives alone, %</td>
<td>8.7</td>
<td>8.6</td>
<td>9.5</td>
<td>$x^2=0.10$, d.f.=1, P=0.74</td>
</tr>
<tr>
<td>Married/cohabiting, %</td>
<td>73.9</td>
<td>73.0</td>
<td>79.2</td>
<td>$x^2=2.1$, d.f.=1, P=0.14</td>
</tr>
<tr>
<td>Post-school study, %</td>
<td>60.0</td>
<td>60.2</td>
<td>59.2</td>
<td>$x^2=0.04$, d.f.=1, P=0.84</td>
</tr>
<tr>
<td>Claiming state benefits, %</td>
<td>12.7</td>
<td>10.5</td>
<td>25.6</td>
<td>$x^2=22.3$, d.f.=1, P=0.0001</td>
</tr>
<tr>
<td>History of clinical depression, %</td>
<td>20.2</td>
<td>17.7</td>
<td>34.9</td>
<td>$x^2=19.9$, d.f.=1, P=0.0001</td>
</tr>
<tr>
<td>Certified sick &gt;3 months in previous 12 months, %</td>
<td>9.2</td>
<td>7.8</td>
<td>17.5</td>
<td>$x^2=12.2$, d.f.=1, P=0.0001</td>
</tr>
<tr>
<td>Suffering serious physical illness/handicap, %</td>
<td>20.7</td>
<td>19.6</td>
<td>27.0</td>
<td>$x^2=3.6$, d.f.=1, P=0.06</td>
</tr>
<tr>
<td>Number of patients</td>
<td>901</td>
<td>772</td>
<td>126</td>
<td></td>
</tr>
</tbody>
</table>

HADS–D, Hospital Anxiety and Depression Scale – Depression sub-scale.

1. Score 8 or over on the HADS–D.

2. Note: HADS–D score could not be computed for 3 patients.
for depression identified by this criterion among participants was 14% (126/901).

Table 1 summarises the relationship between a range of patient factors and depression. Significantly fewer men with depression were in paid work compared with the rest of the sample; if in work, they were less likely to enjoy their job. They were also significantly more likely to live in rented accommodation, to be receiving state benefits, to have a history of depression or to have been certified sick for more than 3 months in the year before the index consultation.

### Physical symptom reporting and HADS–D caseness

Differences in specified physical symptoms reported in the 4 weeks before the index consultation in patients rated as depression cases and non-cases are presented in Table 2. Men categorised as depressed were significantly more likely to report physical symptoms in all our defined categories except back pain. Associations between reported symptoms and depression were not significantly affected by patient age.

### Independent effects of patient factors and symptoms

We conducted a logistic regression to explore independent associations between patient socio-demographic and clinical factors, reported physical symptoms and risk of depression (Table 3). All variables significantly associated with depression at the univariate level of analysis were initially included as covariates in the regression model. However, the ‘in paid work’ variable was constant across all selected cases, and was thus excluded.

After regression, only four covariates (two reported symptoms and two patient factors) retained a statistically significant association with depression. Men reporting chest pain in the previous 4 weeks were over twice as likely to be depressed as those not reporting this symptom. Men reporting being very tired or having no energy in the past month, men not enjoying their work and men with previous depression were also significantly more likely to be depressed.

### Comparison of assessments of depression

Levels of agreement between doctor and patient assessments on the Likert depression scale as well as with the HADS–D-derived definition of caseness are shown in Tables 4 and 5. Only the 722 (80.1%) patients consulting one of the four general

---

**Table 2** Patients reporting physical symptoms in the 4 weeks before the index consultation

<table>
<thead>
<tr>
<th>Symptom</th>
<th>HADS–D non-cases (n=772) %</th>
<th>HADS–D cases (n=126) %</th>
<th>Age-adjusted odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach pain</td>
<td>18.2</td>
<td>33.1***</td>
<td>2.22 (1.46–3.38)</td>
</tr>
<tr>
<td>Back pain</td>
<td>44.0</td>
<td>52.0</td>
<td>1.38 (0.95–2.02)</td>
</tr>
<tr>
<td>Pain in limbs or joints</td>
<td>53.1</td>
<td>63.2*</td>
<td>1.53 (1.03–2.28)</td>
</tr>
<tr>
<td>Headaches</td>
<td>38.2</td>
<td>55.6***</td>
<td>2.06 (1.40–3.03)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>15.4</td>
<td>38.1***</td>
<td>3.39 (2.25–5.11)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>12.2</td>
<td>33.1***</td>
<td>3.58 (2.32–5.53)</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>22.2</td>
<td>43.9***</td>
<td>2.74 (1.85–4.07)</td>
</tr>
<tr>
<td>Bowel problems</td>
<td>17.4</td>
<td>30.1**</td>
<td>2.04 (1.33–3.13)</td>
</tr>
<tr>
<td>Nausea, wind or indigestion</td>
<td>33.7</td>
<td>48.4**</td>
<td>1.84 (1.26–2.70)</td>
</tr>
<tr>
<td>Sexual problems/pain</td>
<td>2.0</td>
<td>6.7**</td>
<td>3.62 (1.49–8.78)</td>
</tr>
<tr>
<td>Feeling tired/little energy</td>
<td>53.2</td>
<td>88.7***</td>
<td>7.08 (3.98–12.61)</td>
</tr>
</tbody>
</table>

**Table 3** Logistic regression of depression 'caseness' by reported physical symptoms and patient characteristics

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Odds ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach pain</td>
<td>1.11 (0.58–2.15)</td>
<td>0.74</td>
</tr>
<tr>
<td>Pain in limbs or joints</td>
<td>0.91 (0.55–1.52)</td>
<td>0.73</td>
</tr>
<tr>
<td>Headaches</td>
<td>0.94 (0.56–1.57)</td>
<td>0.80</td>
</tr>
<tr>
<td>Chest pain</td>
<td>2.04 (1.12–3.72)</td>
<td>0.02</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1.74 (0.93–3.30)</td>
<td>0.08</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>1.07 (0.60–1.90)</td>
<td>0.83</td>
</tr>
<tr>
<td>Bowel problems</td>
<td>1.14 (0.59–2.21)</td>
<td>0.69</td>
</tr>
<tr>
<td>Nausea, wind or indigestion</td>
<td>0.98 (0.56–1.71)</td>
<td>0.94</td>
</tr>
<tr>
<td>Sexual problems/pain</td>
<td>2.27 (1.67–7.68)</td>
<td>0.19</td>
</tr>
<tr>
<td>Feeling tired/little energy</td>
<td>4.06 (2.01–8.20)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Patient characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little or no job enjoyment</td>
<td>3.85 (2.33–6.25)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Housing tenure (rented)</td>
<td>1.37 (0.76–2.48)</td>
<td>0.30</td>
</tr>
<tr>
<td>Claiming state benefit</td>
<td>2.13 (0.89–5.06)</td>
<td>0.08</td>
</tr>
<tr>
<td>History of clinical depression</td>
<td>2.03 (1.15–3.56)</td>
<td>0.01</td>
</tr>
<tr>
<td>Certified sick for 3 months in previous 12 months</td>
<td>1.19 (0.41–3.46)</td>
<td>0.75</td>
</tr>
</tbody>
</table>

1. Dependent variable is caseness on the Hospital Anxiety and Depression Scale – Depression sub-scale.

Table 4 Agreement between doctor and patient assessments of depression using the Likert scale

<table>
<thead>
<tr>
<th>Participating doctor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients rated as depressed (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-rated</td>
<td>23.1</td>
<td>27.4</td>
<td>29.7</td>
<td>25.4</td>
</tr>
<tr>
<td>Rated by doctor</td>
<td>3.9</td>
<td>3.0</td>
<td>6.9</td>
<td>7.5</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.19</td>
<td>0.11</td>
<td>0.12</td>
<td>0.18</td>
</tr>
</tbody>
</table>

I. Depression defined as a rating above the mid-point of the six-point Likert scale.
Patients rated as depressed (%) Recorded by doctor: 3.9 3.0 6.9 7.5 Recorded by HADS-D: 10.9 15.7 16.8 13.4
Kappa: 0.34 0.25 0.08 0.53 All patients (n): 256 299 101 67

Table 6 presents data on the validity of the doctors' and patients' assessments of depression, using HADS-D caseness as the predicted gold standard. The doctors' assessments (sensitivity 24.6%) were less accurate than patient ratings (sensitivity 75.5%) in identifying HADS-D cases.

**DISCUSSION**

The prevalence of depression (14%) in this study of men attending a rural general practice is higher than that recorded in previous studies reporting rates categorised by gender and social setting (Paykel et al., 2000; Ayuso-Mateos et al., 2001). However, previous studies were of the general population rather than primary care patients. Our choice of a diagnostic cut-off score of 8 or more on the HADS-D is validated to include both 'probable' and 'possible' cases of depression, set in favour of sensitivity rather than specificity. In unadjusted univariate analysis, a range of recently experienced physical symptoms were associated with depression. Two symptoms, chest pain and feeling tired or having no energy, retained this significant association after adjustment for other symptoms and socio-demographic and clinical variables. In terms of independent effects on depression, only one demographic or socio-economic patient factor, job enjoyment, was found to be statistically significant. We also found that previous depression was significantly associated with current caseness on the HADS-D. There were wide disparities between general practitioners' and patients' Likert scale ratings of reported depression: patients were significantly more likely to consider themselves depressed than were their doctors. This divergence in rating depression was found both in terms of agreement between doctor and patient assessments (overall k=0.15) and, to a lesser extent, between doctor-defined and HADS-D-defined cases (k=0.30). The proportion of 'missed' HADS-D cases was higher for the general practitioners (doctor sensitivity 24.6% v. patient sensitivity 75.5%), although the former had fewer false positives overall (doctor specificity 97.4% v. patient specificity 81.7%).

**Methodological limitations**

Our sample was recruited over a complete year, and included over 90% of all potential participants. The practice area meets recognised criteria for rurality, although it cannot be assumed to be typical of all UK rural populations. The Likert depression rating was developed for this study and had not been previously validated. However, it is unlikely that the wide differences between doctor and patient ratings could be explained by the psychometric properties of the scale. We did not collect data on the characteristics of the general practitioners (e.g. demographics and attitudes) that might influence their rating of patient depression but there is no reason to assume that they differ from those of other clinicians working in comparable demographic settings. Although the men who declined to participate in the study differed from the sample in some respects, the only variable that might have biased our findings is the relatively lower proportion of non-participants with a previous episode of depression recorded in their notes. Men with depression may have a recall bias with regard to physical symptoms, being more likely to notice them and amplify their duration and severity (Katon, 2003), but any such bias adds strength to the argument that the presentation of these symptoms should be seen as a marker for possible depression.

**Implications of our findings**

Although the rate of rural male depression found in our study was higher than that found in other studies, previous research has consistently found lower rates of depression in rural areas compared with urban environments. The European Outcome of Depression International Network...
et al et al

there was a clear disparity between the 

of previous validation of the rating scales, 

and to consider it as largely treatable 

sion with purely work-related problems, 

deprived patients in a more prosperous set-

of social problems and to be largely intract-
counterparts to see depression as a product 

ation. A qualitative study of practice insion. A qualitative study of practice in 

interpretation and management of depres-
icant link between low job enjoyment or 
sion in elderly men. Our finding of a signif-
sion in paid employment, lack of enjoyment in 

factors; in the UK, prevalence of depressive 
collection data relating to prevalence of 

depression and associated risk factors; in the UK, prevalence of depressive disorder in the urban centre (17.1%) was 

substantially higher than that found in the rural study population (6.1%) (Ayuso-Mateos et al, 2001). The UK National Morbidity Survey reported significantly 

higher rates of psychiatric morbidity and 
of alcohol and drug dependence in urban 

compared with rural areas. After adjustment 

for a range of socio-demographic factors the effect of urban residence upon 

risk of psychiatric morbidity was consider-
ably weakened, but was still statistically significant: OR = 1.33, P < 0.05 (Paykel et al, 2000).

Our research suggests that the pattern of factors associated with depression among rural men may differ from those described for deprived urban populations. Employment status, housing tenure, type of work and family structure were not significant factors in predicting male depression in our study. However, for those in paid employment, lack of enjoyment in their work was a significant correlate of de-
pression. Because our study was restricted to people of working age, no evidence is available concerning risk factors for depression in elderly men. Our finding of a signif-
ificant link between low job enjoyment or satisfaction and depression is consistent with previous research exploring the attitudes of general practitioners to the interpretation and management of depres-
sion. A qualitative study of practice in different social settings in north-west England concluded that general practi-
tioners in inner-city urban areas were more likely than their suburban and semi-rural counterparts to see depression as a product of social problems and to be largely intract-
able in nature. The semi-rural and sub-
urban practitioners, treating less socially 
deprived patients in a more prosperous setting, were more prone to associate depression with purely work-related problems, and to consider it as largely treatable (Chew-Graham et al, 2002).

Perhaps our most striking findings relate to the differences between clinicians and patients in their immediate assessments of depression. Regardless of the analysis used (agreement or sensitivity) and the lack of previous validation of the rating scales, there was a clear disparity between the two agencies. We have postulated in previous research that precise agreement between the patient and general practi-
tioner on the nature of symptoms is possi-

bly less important than both parties identifying depression as the core problem (Gabbay et al, 2003). Furthermore, poor 
sensitivity in general practitioners’ detection of depression in cases defined by HADS score has been reported in other studies. Analysis of aggregated data from the Hampshire Depression Project found that nearly two-thirds of cases of depression (score > 7 on HADS–D) were missed by general practitioners using a four-point rating scale (Thompson et al, 2001). How-

ever, the study also reported that marked improvements in sensitivity were achieved by minor revisions in the HADS–D case 
threshold (Thompson et al, 2001).

Previous research suggests that ‘psycholog-
ical’ symptom patterns may be cate-
gorised differently by health professionals and their patients (Leff, 1978). There is also evidence that patients tend to present physical symptoms before psychological ones (Burack & Carpenter, 1983) and that doctors tend to interrupt patients before they have completed their opening state-
ments (Beckman & Frankel, 1984). These factors may explain the tendency to miss depression among patients using normalising symptom attributions (Kessler et al, 1999). The problems of underdetection of depression and suboptimal management of the condition when diagnosed, within general practice, have typically been addressed by educational interventions. This approach assumes that there are key skills that can be taught to primary care 
doctors in order to facilitate psychological symptom interpretation, more accurate diagnosis of depression and better manage-
ment. However, results of intervention trials have been disappointing. A recent 
cluster randomised controlled trial of an educational intervention – training general practitioners in managing depression – found that patients treated by the intervention group had higher rates of satisfaction, but did not significantly differ from patients treated by the control group in terms of outcomes of depression (Gask et al, 2004). Educational initiatives have typically been based on methods of implement-
ing clinical guidelines for the diagnosis and management of depression. One such randomised controlled trial, involving 60 primary care practices, developed a training intervention intended to support guideline adherence throughout the study year. How-

ever, despite considerable resource input, no significant difference was found between trial arms in relation to either the detection of true positives or the short-term and longer-term patient outcomes (Thompson et al, 2000).

Guideline-based education may in the future prove to be effective in increasing detection rates and improving outcomes for patients with depression. However, such an impact would require considerable expansion of the evidence base supporting the guideline recommendations and the subsequent educational interventions (Ken-
drick, 2000). In particular, more empirical evidence is required that would allow great-
er insight into why patients with various characteristics, and in a particular social setting, have specific risk factors associated with depression, and how the risk is mediated by the diagnostic skills of the general practitioner. This may include con-
sidering both ‘pre-consultation’ factors, such as patient socio-demographic and occupational characteristics, and ‘within-consultation’ factors, such as doctors’ different symptom attribution styles.

Improvements in identification and management of depression among men in rural communities will require more than general practitioner education alone. It is also important to ensure that relevant and effective resources to manage depression are available. Doctors are more likely to make a diagnosis of depression if they consider that they have sufficient skills and treatment options to manage it successfully (Dowrick et al, 2000). Since depression among rural men is relatively uncharted territory, it is possible that the doctors in this study were less likely to make a diagnosis because they were uncertain whether the limited range of treatment options available in primary care – antidepressant medication or counselling – would be acceptable to this group of patients.

REFERENCES


---

**CLINICAL IMPLICATIONS**

- Cases of depression are common among men attending a rural general practice.
- Depression is associated with specific physical symptoms and with low job satisfaction.
- Doctors are less likely than patients to diagnose depression in this group.

**LIMITATIONS**

- The Likert scale used for rating depression has not been fully validated.
- No data were collected relating to study general practitioner characteristics.
- There is a possibility of patient recall bias with regard to physical symptoms.

---

Correspondence: Mr C. Shiels, Department of Primary Care, Whelan Building, University of Liverpool, Liverpool L69 3GB, UK. E-mail: cs50@liv.ac.uk

(First received 7 November 2003, final revision 16 April 2004, accepted 22 April 2004)
Depression in men attending a rural general practice: factors associated with prevalence of depressive symptoms and diagnosis

Christopher Shiels, Mark Gabbay, Christopher Dowrick and Christopher Hulbert

BJP 2004, 185:239-244.
Access the most recent version at DOI: 10.1192/bjp.185.3.239

References
This article cites 19 articles, 7 of which you can access for free at: http://bjp.rcpsych.org/content/185/3/239#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at /letters/submit/bjprcpsych;185/3/239

Downloaded from http://bjp.rcpsych.org/ on April 10, 2017
Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to: http://bjp.rcpsych.org/site/subscriptions/