Autism: functional brain mapping of exceptional calendar capacity

NATHALIE BODDAERT, CATHERINE BARTHÉLÉMY, JEAN-BAPTISTE POLINE, YVES SAMSON, FRANCIS BRUNELLE and MÓNICA ZILBOVICIUS

Background ‘Autistic savants’ are individuals with autism who have extraordinary skills. Brain mechanisms underlying such capacities are still unknown.

Aims To map the exceptional calendar capacity of a man with primary autism.

Method Positron emission tomography was used to map brain activity in a man who is able to associate a day of the week with the corresponding calendar date.

Results During the calendar task, the left hippocampus, the left frontal cortex and the left middle temporal lobe were activated.

Conclusions The cerebral circuit involved in this man’s prodigious calendar skill is similar to that normally involved in memory retrieval tasks. These results suggest that the prodigious capacities may be sustained by memory processing.

Declaration of interest None. Funding detailed in Acknowledgements.

The term ‘savant syndrome’ refers to individuals who display an exceptional mental ability despite a low level of general cognitive ability (Treffert, 1988). These ‘savant’ capacities are more frequently observed in persons with autism, ‘autistic savants’, than in the non-autistic population (Rimland & Fein, 1988). Such exceptional abilities include musical skills, mental calculation, outstanding mnemonic skills and extraordinary drawing abilities (Hermelin, 2001).

One of the most common savant abilities observed in people with autism is the so-called calendar calculation or calendar memory (Horwitz et al, 1969; O’Connor & Hermelin, 1984; Kehrer, 1992; Kelly et al, 1997). This refers to the ability to generate the weekday of a given date within seconds, the spans varying from a few years to some centuries. Several cognitive hypotheses were formulated to account for this prodigious ability, such as eidetic imagery, high-speed calculation, raw memorisation and use of certain calendrical rules. However, calendar calculation seems to be sustained by memory but the neural mechanisms underlying this capacity are poorly understood.

To investigate the neural network implicated in prodigious calendar ability, we performed a positron emission tomography (PET) activation study in a 22-year-old savant with prodigious calendar capacities. Despite severe behavioural and cognitive impairment, he was able to generate, in a few seconds, a weekday corresponding to a date. He had been able to perform this association for the previous 18 years (since he was 4 years old) but was unable to perform this for future dates. Therefore we hypothesised that his prodigious calendar abilities were sustained by memory processing.

METHOD

Case report We report functional brain mapping of a right-handed male who was 22 years old at the time of study. Signs of autism, such as social withdrawal, echolalia, stereotypic and repetitive motor mannerisms, persistent preoccupation with parts of objects, and self-harm were detected during the second year of life. Normal schooling was unsuccessful. At the age of 4 years he was admitted to a day-care psychiatric unit. He was also examined by a neuropsychiatrist. The diagnosis of autism was made by a psychiatrist and a psychologist according to DSM-IV criteria (American Psychiatric Association, 1994). Diagnosis was confirmed by the Autism Diagnostic Interview – Revised (ADI-R) (Lord et al, 1994) (social interaction scores: 29; verbal communication scores: 24; non-verbal communication scores: 12; stereotypy scores: 9; age-onset criteria: 3). At the age of 20 years his global IQ was 66 (Wechsler Adult Intelligence Scale – Revised; Wechsler, 1981), with a score of 45 for performance and 83 for verbal abilities. He had typical autistic speech abnormalities (verbal perseveration, stereotypy, echolalia, abnormal prosody, neologism). Meticulous clinical evaluation was also performed. He had no infectious, metabolic, neurological or genetic diseases. He is not dysmorphic. Electroencephalography and magnetic resonance imaging (MRI) were normal.

An ethics committee approved this study and examination was performed with the informed written consent of the parents.

Brain imaging protocol Positron emission tomography (PET) uses positron-emitting labelled carriers to produce an image of brain activity. One of the applications of PET is the study of functional brain activity by measuring regional cerebral blood flow during the performance of cognitive tasks. Regional changes in cerebral blood flow between two tasks reflect the mobilisation of functional units specific to the new task. Hence it is possible to identify the brain regions activated by the stimulus. The purpose of this study was to identify the regions activated by performance of the calendar task. To do this, blood flow images were obtained at baseline and during performance of the task and the two images were subtracted. Those regions that had been activated showed a change in blood flow.

Task In the calendar task dates were chosen randomly over a period of 16 years (1982–1998). During the scan, dates were
were included in the model, allowing an
Images of five normal controls during rest
individual pattern of activation we
differences in global flow were corrected
Gaussian kernel) and statistical analysis
standard stereotactic space (Talairach &
Statistical parametric mapping software
intravenous injections of H
distribution of radioactivity after bolus
bral blood flow was determined from the
full width at half maximum. Relative cerebral
slices, with a resulting resolution of 5 mm
Exact HR+962 PET camera (Siemens,
Wisconsin, USA) was also performed on
of the brain (General Electric 1.5-T Signa
Three- Three-dimensional T1 high-resolution MRI
Image acquisition
Scanning was performed using an ECAT
Exact HR+962 PET camera (Siemens,
Knoxville, Tennessee, USA). Attenuation-
corrected data were reconstructed into 63
slices, with a resulting resolution of 5 mm
full width at half maximum. Relative cerebral
blood flow was determined from the
distribution of radioactivity after bolus
intravenous injections of H$_{15}$O (Fox et al.,
1984). Twenty seconds before each scan,
10 mCi of H$_{15}$O was administered by an
intravenous bolus injection. Data were col-
clected over 80 s. The young man was lying
in the scanner in a quiet darkened room.
Three measurements of relative cerebral
blood flow were performed: (1) at rest; (2)
during the auditory calendar task; and (3)
during a control repetition of words. Tasks
started 20 s before image acquisition.
Three-dimensional T1 high-resolution MRI
of the brain (General Electric 1.5-T Signa
system, GE Medical Systems, Milwaukee,
Wisconsin, USA) was also performed on
the same day.

Image analysis
Statistical parametric mapping software
(SPM96, Wellcome Department of Cogni-
tive Neurology, London) was used for
image realignment, transformation into
standard stereotactic space (Talairach &
Tournoux, 1988), smoothing (15 mm
Gaussian kernel) and statistical analysis
(Friston et al., 1995). State-dependent
differences in global flow were corrected
using proportional scaling. To assess the
individual pattern of activation we
designed a multistudy model matrix.
Images of five normal controls during rest
were included in the model, allowing an
estimation of inter-participant variability.

The three conditions (rest, calendar
task and word repetition) were compared
using the t-statistic subsequently trans-
formed into a normally distributed Z-
statistic. Z-maps were thresholded at 3.09
($P<0.001$).

RESULTS
During the calendar task 15 dates were
given and the young man gave 100% correct responses. The calendar task
induced a significant activation of a large
left fronto-temporal network compared
with rest. This network included: the left
inferior (Brodmann area (BA) 45, 46, 47),
middle (BA, 9, 10) and precentral frontal
cortex (BA 6), the left anterior cingulum,
the left superior and middle temporal areas
(BA 39, 21, 22) and the left hippocampus
(Z-score > 3.09, $P<0.001$).

The word repetition task induced activ-
ation of the left frontal (BA 6, 9, 10, 44),
left temporal (BA 21, 22, 39) and right pre-
central and postcentral frontal cortex (BA
6, 4 and 43) (Z-score > 3.09, $P<0.001$)
compared with rest. There was no activ-
ation in the left hippocampus during the
word repetition task.

Specific calendar task activation (calen-
dar task compared with word repetition
task, Fig. 1) was associated with significant
activation (Z-score > 3.09, $P<0.001$) of
the left hippocampus, of the left middle
temporal gyrus (BA 21) and of the left
inferior frontal gyrus (BA 47, 45).

DISCUSSION
Functional brain imaging offers a new
means of investigating the cerebral net-
works involved in the exceptional abilities
frequently displayed by those with autism.
Prodigious calculation ability in a non-
autistic individual has been linked to highly
efficient memory processing sustained by
prefrontal and medial temporal areas
(Pesenti et al., 2001).

We performed a PET activation study
to identify a brain network implicated in
the prodigious calendar aptitude in people
with autism. The present results show that
the young man’s capacity to associate a
day of the week with a corresponding date
of the calendar was associated with signifi-
cant activation of a left fronto-temporal
network, including the hippocampus,
which is strongly implicated in memory
processing (Cipolotti et al., 2001; Nadel &
Moscovitch, 2001). This hippocampal
activation is in agreement with the clinical
hypothesis that the young man’s prodigious
calendar capacity was sustained by memory
processing.

Fig. 1 Cortical activation of a savant during a calendar task. The calendar task was associated with a left (L)
significant hippocampo-fronto-temporal activation compared with a control word repetition task. These
results are represented in the sagittal, coronal and axial plane of the T1 magnetic resonance imaging (Z-score
> 3.09, $P<0.001$).
However, the present findings must be considered in the light of some methodological limitations. First, as the calendar day–date association task is unusual, we have not compared the pattern of brain activation with that of normal controls. A study with a large number of individuals with the same savant capacities and an appropriate control group would help to establish a more general mechanism for this capacity in autism.

Second, the choice of a control task for the calendar condition was complex. The word repetition task controls for some aspects of speech perception and production but not for all cognitive components of the calendar task. This choice could limit the interpretation of the pattern of activation observed during the calendar task. However, the hippocampal activation was observed when comparing the calendar task with both control and rest conditions, and was not detected during the word repetition task. This implicates the hippocampus in the present calendar task. However, we cannot generalise the findings in this single individual to savant abilities in populations.

Despite these methodological limitations, this preliminary study disclosed a cerebral circuit involved in the prodigious calendar capacity of a savant. The pattern of activation observed during the calendar task implicated a selective brain network including the left inferior frontal cortex, the middle temporal cortex and the hippocampus. This network is normally activated during delayed memory retrieval processing in normal controls (Dupont et al., 2001). Therefore, the present results suggest that the prodigious calendar capacity of this young man may be sustained by a special memory processing.

These findings may lead to speculation that during development people with autism can ‘overdevelop’ a normal brain circuit and develop prodigious capacity, despite their severe cognitive and behavioural handicaps. The prodigious calendar capacity in autism and its associated brain network should be regarded in the light of an early developmental disorder. Autism might be associated with a developmental disorganisation of the neural circuits, facilitating the emergence of these peculiar networks. Finally, our study illustrates how functional brain imaging offers a new perspective for the investigation of brain mechanisms underlying the still mysterious autistic savant syndrome.

CLINICAL IMPLICATIONS

- The capacity to associate a day of the week with a corresponding date is associated in this individual with significant activation of a fronto-temporal network including the hippocampus, which is highly implicated in memory processing.
- Functional brain imaging opens a new perspective for investigating the cerebral networks involving exceptional capacities in autism.
- The present results may lead to the speculation that during development people with autism can ‘overdevelop’ a normal brain circuit, giving rise to prodigious capacity, despite their severe cognitive and behavioural handicaps.

LIMITATIONS

- A single case study is inadequate for establishing a general mechanism for this capacity in autism.
- We cannot generalise the findings from a single individual to savant abilities in populations with autism.
- Owing to the unusual nature of the calendar task, we did not ask our control group to participate in it, and so we could not compare the pattern of brain activation that it produced in a savant and in controls.

REFERENCES

Autism: functional brain mapping of exceptional calendar capacity
NATHALIE BODDAERT, CATHERINE BARTHÉLÉMY, JEAN-BAPTISTE POLINE, YVES SAMSON, FRANCIS BRUNELLE and MÔNICA ZILBOVICIUS
Access the most recent version at DOI: 10.1192/bjp.187.1.83

References
This article cites 12 articles, 1 of which you can access for free at:
http://bjp.rcpsych.org/content/187/1/83#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;187/1/83

Downloaded from
http://bjp.rcpsych.org/ on October 6, 2016
Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/