Socio-economic deprivation and duration of hospital stay in severe mental disorder

MELANIE AMNA ABAS, JANE VANDERPYL, ELIZABETH ROBINSON, TRIX LE PROU and PETER CRAMPTON

Summary Adults from South Auckland, New Zealand who required acute admission to hospital were followed from admission to discharge. After adjusting for demographic factors, diagnosis, chronicity, severity, consultant psychiatrist and involuntary admission, the length of stay for those from more deprived areas was significantly longer by 7 days than for those from less deprived areas. Information on socio-economic deprivation should be used in discharge planning and in optimising access to community care. Research is needed on group-level factors that may affect recovery from mental disorders.

Declaration of interest None. Funding detailed in Acknowledgements.

Socio-economic deprivation, which measures the disadvantage of an individual or group relative to the local community or wider society (Townsend, 1987), is an indicator of socio-economic position. Three studies have shown an association between area deprivation and length of psychiatric hospital stays (Hirsch, 1988; Thorncroft et al, 1993; Glover et al, 1998), but did not control for potentially important confounders. In this study we used the level of deprivation of area of residence as an indicator of individual socio-economic position (Salmond & Crampton, 2001).

METHOD

Counties Manukau Mental Health Services cover the mostly urban South Auckland district which has 378 000 residents. South Auckland has a high proportion of Maori (18%) and Pacific Islanders (17%) and is deprived relative to most of New Zealand. The study site was the 45-bedded psychiatric in-patient unit, which is managed by three consultants. Community care is provided by five teams, with no day hospital. The cohort comprised consecutive admissions from within the district from 1 November 1999 to 31 July 2000. We excluded patients from outside the area, patients readmitted during the study period and homeless people who had no address to code for area deprivation.

Depression was measured using the NZDep96 deprivation index, which was created from 1996 census data (Salmond et al, 1998) available for all small areas in New Zealand. A small area is defined as one meshblock (the smallest geographical area for statistical purposes (median population about 90 persons)) or two meshblocks. The NZDep96 index is a weighted combination of the proportions, in a small area, of nine variables, such as being on a means-tested benefit or lacking a specified resource (e.g. qualifications or a household telephone). The index is split into a quintile scale where 1 represents the least deprived 20% of small areas and 5 the most deprived 20%.

RESULTS

Table I Multiple regression showing the effect of deprivation on the length of hospital stay for index admissions (n = 291)

<table>
<thead>
<tr>
<th>Deprivation</th>
<th>Comparison with least deprived group</th>
<th>Length of stay, days</th>
<th>Likelihood ratio test for effect of deprivation, (d.f. = 2) χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least deprived (quintiles 1–3)</td>
<td>0.33</td>
<td>21.3</td>
<td>6.09</td>
<td>0.048</td>
</tr>
<tr>
<td>Moderately deprived (quintile 4)</td>
<td>0.52</td>
<td>19.8</td>
<td>13.48</td>
<td>0.001</td>
</tr>
<tr>
<td>Most deprived (quintile 5)</td>
<td>0.51</td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All other variables in the model at baseline values.
2. Age, gender, ethnicity, urban residence and marital status; principal diagnosis; any comorbid diagnosis; severity/function/chronicity (total Health of the Nation Outcome Scales score, severe aggressive or overactive behaviour on admission; severe problems with alcohol or drug-taking, Global Assessment of Functioning score, number of previous admissions, length of mental illness); medication non-adherence on admission; severe physical illness or physical disability; service factors (identity of responsible consultant psychiatrist; admitted under the New Zealand Mental Health Act (Compulsory Treatment) 1992, distance from home to hospital).
were from outside the catchment area. For 291 of the remaining 322 patients (90%), enough information was available to enable coding at small area level. There were 166 males (57%) and the mean age of the sample was 36 years. Ninety-nine patients (34%) identified themselves as Maori, 116 as European (40%), 32 as Pacific Islander (11%) and 44 as Asian or other (15%). Three-quarters of the sample were single, widowed, divorced or separated and 43% lived in areas defined as ‘most deprived’, compared with 20% of the national population. One hundred and forty-three patients (49%) had a principal diagnosis of schizophrenia, 108 (37%) of a mood disorder and 41 (14%) another principal diagnosis, with 140 (48%) having a comorbid diagnosis. The geometric mean length of hospital stay was 16.6 days. One hundred and ninety-eight patients (68%) had been admitted involuntarily. The mean number of previous admissions to the psychiatric in-patient unit was 1.6 and the mean length of illness was 101 months.

For those from most deprived areas, the length of hospital stay was 21 days, compared with 12 days for those from the least deprived areas. After full adjustment for confounding variables (Table 1), this was 22 days for those from the most deprived areas, compared with 15 days for those from the least deprived areas. Those from moderately deprived areas also had a longer length of stay than those from the least deprived areas. Principal diagnosis was the main contributor to variance (13%), followed by psychiatric symptom severity/function/chronicity (8%), small area deprivation (6%) and the identity of the consultant psychiatrist (3%).

Individual measures of socio-economic position (individual unemployment, occupational class, housing tenure, being on a benefit) each added only 1–2% to the explanatory power of a model for length of hospital stay containing demographic, clinical and service factors.

DISCUSSION

Lower socio-economic position, as measured by deprivation of small area of residence, was independently associated with increased length of hospital stay. Although principal diagnosis explained more of the variance, the association between deprivation and length of hospital stay remained after accounting for demographic and clinical factors and differences between clinicians. This is consistent with ecological studies (Hirsch, 1988; Glover et al, 1998) and with a study which stratified according to diagnosis (Thornicroft et al, 1993). Our findings may be at variance with a study that found no association (Weinberg et al, 1998) because we used a measure of deprivation (the NZDep96) that is less prone to measurement error, being applied at a spatial level of 90 persons (Salmond et al, 1998; Salmond & Crampton, 2001).

Selection bias is an unlikely explanation, as healthcare is geographically sectorised and little private care is available. Furthermore, the association remained after diagnosis, severity and length of illness had been controlled for. We controlled for most potentially important confounders other than social support. We are not able to say whether the effect of deprivation is at the individual, household or area level. Our data suggest that place may be at least as important as person and that moderate deprivation also has an effect.

Conditions in deprived neighbourhoods (few employment opportunities, restrictive work environments, social fragmentation and poor services) might have an adverse effect on those with mental disorders and their carers (Macintyre et al, 2002; Allardyce et al, 2005). Several study participants would have been left alone all day if discharged, either because they lived alone or their families worked long and unsocial hours. This, combined with poor opportunities for local employment and poor public transport, contributed to a long length of hospital stay while awaiting daytime placement. Other patients had comorbid physical illness which was aggravated by poor housing. Individual, household and neighbourhood social circumstances should be taken into account in discharge planning and in optimising access to community care. Research is needed to develop hypotheses about group-level factors that may explain the onset and outcome of mental disorders (O’Campo, 2003).

REFERENCES

Macintyre, S., Ellaway, A. & Cummins, S. (2002) Place effects on health: how can we conceptualise, operationalise and measure them? Social Science and Medicine, 55, 125–139.

ACKNOWLEDGEMENTS

We thank Rob Kydd and Sue Wyeth at South Auckland Health for facilitating the study. Clare Salmond for advice on the use of NZDep96, Gary Jackson and Sharon Pearce for data, and the Oakley Mental Health Research Foundation and the Auckland Medical Research Foundation for funding.
Socio-economic deprivation and duration of hospital stay in severe mental disorder

MELANIE AMNA ABAS, JANE VANDERPYL, ELIZABETH ROBINSON, TRIX LE PROU and PETER CRAMPTON

BJP 2006, 188:581-582.
Access the most recent version at DOI: 10.1192/bjp.bp.104.007476

References
This article cites 10 articles, 4 of which you can access for free at:
http://bjp.rcpsych.org/content/188/6/581#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;188/6/581

Downloaded from
http://bjp.rcpsych.org/ on June 25, 2017
Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/