Explanatory models of schizophrenia

Das et al (2006) assessed the efficacy of interventions to change explanatory models of schizophrenia among relatives of people with schizophrenia in India. They claim that their educational intervention presented the biomedical model without dismissing non-biomedical models and that indigenous beliefs were not challenged. Depending on the way in which the intervention was delivered, one can argue that presenting biomedical models is in itself directly challenging to indigenous beliefs. Although the authors found that their educational programme significantly reduced the number of non-biomedical beliefs, this does not say anything about the quality or depth of these beliefs. Moreover, the description of participants’ beliefs as ‘persistent’ and ‘resistant’ suggests that the authors consider holding alternative explanatory beliefs to be problematic. They further justified their aim by suggesting that holding indigenous beliefs contributes to a poor outcome, which they defined as not recognising a biomedical explanation of schizophrenia and not adhering to medication. This is circular logic, using a very limited construction of outcome.

Despite citing a paper by Angermeyer’s German research team, Das et al miss their important and consistent finding that biomedical causal beliefs are significantly related to negative attitudes (e.g. Angermeyer & Matschinger, 2003). Such negative consequences of holding biomedical causal beliefs have been found in numerous countries among the public, relatives and patients with severe mental illness (Read & Haslam, 2004; Read et al, 2006).

How does exporting the beliefs of Western experts to low- and middle-income countries fit with the consistent finding that these countries have much better outcomes for ‘schizophrenia’ than Western countries (Harrison et al, 2001)?

Finally, Das et al recommend that the advantages of medication should be discussed without dismissing or challenging indigenous explanatory models. We cannot assume that the challenge is not inherent in the underlying principles of the belief systems themselves. Investigating ways in which biomedical explanations can be discussed in conjunction with cultural beliefs is a constant challenge that will not be helped by reducing the prevalence of one set of beliefs.

Explanatory models of schizophrenia

Das et al (2006) assessed the efficacy of interventions to change explanatory models of schizophrenia among relatives of people with schizophrenia in India. They claim that their educational intervention presented the biomedical model without dismissing non-biomedical models and that indigenous beliefs were not challenged. Depending on the way in which the intervention was delivered, one can argue that presenting biomedical models is in itself directly challenging to indigenous beliefs. Although the authors found that their educational programme significantly reduced the number of non-biomedical beliefs, this does not say anything about the quality or depth of these beliefs. Moreover, the description of participants’ beliefs as ‘persistent’ and ‘resistant’ suggests that the authors consider holding alternative explanatory beliefs to be problematic. They further justified their aim by suggesting that holding indigenous beliefs contributes to a poor outcome, which they defined as not recognising a biomedical explanation of schizophrenia and not adhering to medication. This is circular logic, using a very limited construction of outcome.

Despite citing a paper by Angermeyer’s German research team, Das et al miss their important and consistent finding that biomedical causal beliefs are significantly related to negative attitudes (e.g. Angermeyer & Matschinger, 2003). Such negative consequences of holding biomedical causal beliefs have been found in numerous countries among the public, relatives and patients with severe mental illness (Read & Haslam, 2004; Read et al, 2006).

How does exporting the beliefs of Western experts to low- and middle-income countries fit with the consistent finding that these countries have much better outcomes for ‘schizophrenia’ than Western countries (Harrison et al, 2001)?

Finally, Das et al recommend that the advantages of medication should be discussed without dismissing or challenging indigenous explanatory models. We cannot assume that the challenge is not inherent in the underlying principles of the belief systems themselves. Investigating ways in which biomedical explanations can be discussed in conjunction with cultural beliefs is a constant challenge that will not be helped by reducing the prevalence of one set of beliefs.


M. Taitimu, J. Read Private Bag 92019, Department of Psychology, University of Auckland, New Zealand. Email: m.taitimu@auckland.ac.nz doi: 10.1192/bjp.189.3.284

Authors’ reply: We agree with Taitimu & Read that discussing biomedical beliefs in conjunction with indigenous beliefs in the clinical setting is challenging. However, patients, their relatives and the general public seem to simultaneously hold multiple and contradictory beliefs related to mental illness and its treatment (Joel et al, 2003). Biomedical explanations (e.g. disease, abnormality, infection, degeneration, etc.) often coexist with indigenous beliefs (e.g. supernatural causation, sin and punishment, karma, etc.) in many cultures (Saravanan et al, 2004). It is common for people in India to simultaneously seek help and treatment from practitioners of modern medicine and from traditional and faith healers (Jacob, 1999). This may not lead to conflict providing that each practitioner does not claim exclusivity.

We have hypothesised that such multiple models may be advantageous, ‘buffering’ notions of loss and stigma and preventing social disintegration (Saravanan et al, 2004).

We agree that the acceptance of mental illness labels may increase perceived stigma. Nevertheless, holding alternative beliefs of causality also has costs. This is particularly true for people with chronic psychosis for whom antipsychotic medication has a powerful effect on outcome. Studies which have reported a better outcome for people with schizophrenia from low- and middle-income countries included many patients on psychotropic medication. The complete failure to subscribe to a disease model often results in a delay in seeking treatment and a poorer outcome.

The acknowledgement that individual health systems do not comprehensively address every issue for all mental disorders is useful in patient care (Jacob, 1999). It provides for alternatives in clinical situations, especially for psychiatrists practising in non-Western cultures, and allows the use of regional therapies, yoga and meditation, and respects folk beliefs and religions. Many experienced psychiatrists working in non-Western cultures employ cultural constructs and local treatments in their practice. Although psychological constructs are easily incorporated, traditional physical therapies are seldom used owing to the poor understanding of their active principles. Only a minority of mental health professionals in low- and middle-income countries rigidly function within Western frameworks. The majority acknowledge the ethnocentrism of psychiatry and its treatment techniques and the equally effective traditional alternatives. An eclectic approach and a liberal framework will enable psychiatrists to incorporate local cultural beliefs and traditional psychological treatments in therapy, thus increasing the therapeutic armamentarium.
Restarting clozapine following leucopenia or neutropenia

Dunk et al (2006) report rechallenge with clozapine of people with either treatment-resistant or treatment-intolerant schizophrenia. A proportion of these may lack insight and capacity and may therefore be detained under the Mental Health Act 1983 but the authors do not indicate the proportion of patients in this group. If a person has been compulsorily detained, the treating clinician may require a second opinion from the Mental Health Act Commission. We are interested in whether Dunk et al have any data on this, as in the British National Formulary clozapine is contraindicated in those who have previously developed dyscascia. The Mental Health Act Commission may not provide a second opinion for drugs that are contraindicated.

Dunk et al report a possible alternative explanation for dyscascia during first exposure to clozapine in 23 patients. There was no alternative explanation in the remaining 28 patients. An obvious question that arises is whether a patient is more or less likely to develop dyscascia on rechallenge if they have a history of an alternative explanation. This would be a very useful predictor and would be helpful when discussing the options with the patient prior to rechallenge.

Risk factors for coronary heart disease in people with severe mental illness


A number of points in the results, discussion and conclusions seem unjustified and are potentially misleading. For example, the statement that patients with SMI had a significantly raised CHD risk score is based upon the unadjusted risk. After adjustment for age and gender the odds ratio dropped below the level of statistical significance and fell further to a non-significant value of 1.3 (95% CI 0.7–2.7) after considering employment status. The authors’ claim that ‘we have demonstrated that SMI itself can incur CHD risk, over and above that associated with the socioeconomic deprivation experienced by these patients’ is not justified.

This claim is repeated in the abstract: ‘excess risk factors for CHD are not wholly accounted for by medication or socioeconomic deprivation’. This statement seems either unproven or reducible to the fact that smoking is more common among people with SMI. Such a conclusion is scarcely novel and clearly does not explain the excess mortality observed in patients with SMI (Joukamaa et al, 2006). The fact that diabetes is both more common among people with SMI and much less explicable in terms of their deprivation or demographics receives relatively little comment, despite having particular relevance for their healthcare needs.

Declaration of interest

L.D. has undertaken consultancy for Novartis UK and Novartis Australia and received a fee from Novartis Australia for the preparation of this paper; she was formerly employed by Novartis UK. L.A. and C.A. are employed by Novartis UK.
Authors’ reply: Individual results in our paper should be viewed within the context of our overall analysis plan. In the whole sample (aged 30–75 years), people with SMI were more likely to have a raised CHD risk score for their age and gender on univariate analysis. We explored ‘effect modification’ or ‘interaction’ by age using conventional statistical methods to determine whether interaction was important in predicting CHD risk and found that SMI does predict excess CHD risk even after adjustment, but the heterogeneity of results at different ages cannot be ignored. Several results were only significant in those under 65 (e.g. Table 2) and we illustrated this age interaction in two figures.

Dr Gilleard quotes one insignificant adjusted odds ratio which includes people of all ages. In fact, this odds ratio demonstrates that the findings are less striking when differences between age-groups are ignored.

We agree that in the overall sample some dichotomous results lost significance after adjustment for unemployment, although most odds ratios still did not approach unity. However, SMI still predicted CHD risk after adjustment when the age interaction was included in a statistical model. Furthermore, continuous lipid and risk score variables were also predicted by SMI in those under 60 even after adjustment for unemployment (Table 2).

The clinical importance of the interaction is that excess cardiovascular risk is demonstrable in younger people with SMI. Consistent with this we have recently found that excess mortality from cardiovascular disease is also more pronounced in younger people with SMI (Osborn et al., 2006).

Contrary to Dr Gilleard’s assertion, Tables 2 and 3 and Fig. 2 show that CHD risk in those under 60 is not simply reducible to smoking. Risk also relates to differences in cholesterol ratios, diabetes and hypertension, as we stressed in the conclusions of our abstract.

Relative risk of cardiovascular and cancer mortality in people with severe mental illness from the UK General Practice Research Database. Archives of General Psychiatry (in press).

D. P. J. Osborn Department of Mental Health Sciences, University College London, Rowland Hill Street, London NW1 8DD, UK.
Email: d.osborn@medsch.ucl.ac.uk

M. B. King Department of Mental Health Sciences, Royal Free and University College Medical School, London, UK

J. Nazareth Department of Primary Care and Population Sciences, Royal Free and University College Medical School, London, UK
doi: 10.1192/bj.189.3.286

One hundred years ago

Nottingham City Asylum, Mapperly Hill
On January 1st, 1905, there were in this asylum 770 patients, and on December 31st, 1905, there were 790, an increase during the year of 20, which is practically the average annual increase for the past decade. As to accommodation, the Medical Superintendent, Dr. Evan Powell, says that there was considerable overcrowding on the female side, a fact also commented upon by the Commissioners, but that some relief will be afforded by the opening of a new dormitory. During the year 163 were admitted, of whom 134 were first admissions. In 84 the attacks were first attacks within three months, and in 10 more within twelve months of admission; in 43 the attacks were “not first” attacks within twelve months of admission; in 17 the attacks were of more than twelve months’ duration, and the remaining 9 were congenital cases. The admissions were classified as to the forms of mental disorder into: Mania of all kinds, 46; melancholia of all kinds, 46; dementia of all kinds, 27; general paralysis, 12; acquired epilepsy, 8; and cases of congenital defect, 9. As to the probable causes of the insanities in the admissions, alcoholic intemperance was assigned in 22, or 13.5 per cent.; venereal disease in 4; puberty the menopause, and old age in 18; previous attacks in 36; privation in 7; various bodily diseases in 30; and “moral” causes in 35. Hereeditary influences were ascertained in 23, or just over 14 per cent. During the year 66 were discharged as recovered, giving a recovery-rate on admissions of 42 per cent., being 2 per cent. above the average for this institution and 4.21 per cent. above the average for all asylums in England and Wales for 1905. There were also 7 discharged as improved, 4 as not improved and there were 66 deaths. These last give a percentage death-rate on the average numbers resident of 8.42. The deaths were due in 36 cases to cerebro-spinal diseases, including 21 cases of general paralysis; 22 from chest diseases, including 11 cases of phthisis; 3 from abdominal diseases and the remainder from local or general diseases, including 2 from old age. The deaths due to tuberculous diseases were 12 in number, or just over 18 per cent. of the total deaths, as contrasted with the 16.3 per cent. of all county and borough asylums in 1905. No suicide or fatal accidents occurred during the year, and therefore no inquest was held. Also there was an entire freedom from any infectious disease during the year and no serious casualty occurred.

REFERENCE
British Medical Journal, 10 November 1906, 1343.

Researched by Henry Rollin, Emeritus Consultant Psychiatrist, Horton Hospital, Epson, Surrey
doi: 10.1192/bmj.189.3.286a
Risk factors for coronary heart disease in people with severe mental illness
C. Gilleard
Access the most recent version at DOI: 10.1192/bjp.189.3.285b

References
This article cites 2 articles, 2 of which you can access for free at:
http://bjp.rcpsych.org/content/189/3/285.3#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;189/3/285-b

Downloaded from
http://bjp.rcpsych.org/ on July 7, 2017
Published by The Royal College of Psychiatrists