Correspondence
EDITED BY KIRIAKOS XENITIDIS and COLIN CAMPBELL

Genetic hypotheses for schizophrenia

In their ‘common disease – rare alleles’ hypothesis McClellan et al (2007) come close to formulating an unstable theory. Although they refer to currently fashionable ‘candidate genes’ – e.g. dysbindin, neuregulin and DISC1 – it appears that they do not regard these as established. I agree that there is no consistency in the findings across even the largest genome scans conducted to date (sample sizes exceeding 300 and totally over 1000 sib-pairs; Crow, 2007) but disagree profoundly about the alternative.

We know that in schizophrenia: (a) incidences are more uniform across populations as one moves to the core syndrome, e.g. nuclear symptoms (Jablensky et al, 1992); (b) structural brain changes (e.g. ventricular enlargement) are consistent across populations (Chua et al, 2003) and uniform across patients relative to controls (Vita et al, 2000); (c) age at onset has a specific distribution throughout the reproductive phase of life; (d) there are gender differences (earlier onset and worse outcome in males); (e) the core syndrome comprises symptoms that are language related (i.e. specific to Homo sapiens). None of these findings would be expected if schizophrenia were a result of random mutations in a large number of genes such as McClellan et al postulate, nor would one expect variation in the form of illness within families as is generally observed.

While McClellan et al’s hypothesis promises a search for elusive rare alleles that will never reach a conclusion, Craddock et al (2007) perseverate in their claim that ‘Several genes have been implicated repeatedly as confronting risk for schizophrenia or bipolar disorder’. Comparison of the largest and most systematic linkage studies, including those of Craddock et al themselves, shows that these claims cannot be sustained (Crow, 2007).

Alternative hypotheses to the ‘rare alleles of major effect’ and the ‘polygenes of small effect’ deserve consideration. One such hypothesis (Crow, 2007) is that the variation arises in relation to characteristics that are specifically human, i.e. recent in evolution, and that it is ‘epigenetic’ in form, i.e. involves a modification of the sequence (methylation of DNA) or the associated chromosomal structure (methylation, phosphorylation or acetylation of histones) rather than a change in the DNA sequence itself. We do know that the risk for first-degree relatives is approximately 10%, whereas that for second-degree relatives is very little increased compared with the population as a whole. Although this is often held to be consistent with polygenic influence, it is also compatible with an ‘imprint’ that is applied and reapplied in meiosis (i.e. with a short time course between generations). The solution proposed is that the variation arises in relation to the change (speciation event) that defined the species, and that this is associated with the cerebral torque – the bias from right frontal to left occipital across the antero-posterior axis that is characteristic of the human brain. In contrast to McClellan et al’s rare alleles and Craddock et al’s polygenes of small effect, this hypothesis is specific and refutable – a gene has been identified that duplicated at 6 million years from the X to the Y chromosome to give rise to the ProtocadherinX/Y gene pair. This pair has been subject to accelerated evolution since the duplication event (Williams et al, 2006) and is in an unusual situation with respect to epigenetic modulation. This variation can be assessed and the hypothesis thereby tested.


T. Crow University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK. Email: tim.crow@psych.ox.ac.uk
doi: 10.1192/bjp.191.2.180

Authors’ reply: We are delighted that our article has stimulated discussion about strategies for gene discovery in schizophrenia. We agree that schizophrenia, like other complex traits, will be influenced by a large number of genetic and epigenetic events with a spectrum of effects. Both rare alleles of large effect and common alleles of modest effect are likely to be discovered (Craddock et al, 2007). Rare severe-effect alleles are fully compatible with familial patterns of schizophrenia because many (perhaps most) such alleles have arisen de novo in the present or recent generations. De novo mutations play havoc with predictions of conventional recurrence risk models. For example, de novo meiotic mutations (in the parental germline) increase disease concordance among monozygotic but not dizygotic twins. In contrast, de novo mitotic mutations or epigenetic events (in early embryogenesis) reduce concordance among both monzygotic and dizygotic twins.

Genetic association studies are not the most straightforward path to gene discovery for schizophrenia. Individually rare alleles cannot be identified by comparing frequencies of common alleles among unrelated patients with controls, even with enormous numbers of well-diagnosed patients, properly matched controls and
very dense (and expensive) screening tools. To the extent that rare alleles are important to schizophrenia, study designs based on a naive ‘common disease–common allele’ model will yield variable and non-replicable results (King et al., 2006).

Characteristic patterns of age at onset, gender differences and brain changes associated with schizophrenia are fully compatible with causal influences of rare severe-effect events, either genetic or epigenetic. Each such event alters the expression, timing or function of one of a very large number of genes. The products of these genes converge in common pathways. Aberrations of a pathway by any of multiple mechanisms may lead to clinically similar disorders.

Crown’s proposition that schizophrenia arises from the disruption of uniquely human genetic elements is very appealing. This premise, however, need not narrow the search for causes, genetic, epigenetic or environmental. Human speciation likely occurred primarily as a result of regulatory changes in genes, rather than common polymorphisms leading to changes in gene sequence (King & Wilson, 1975). The extraordinary number of repeated elements in the human genome gave rise to a vast number of new genes and regulatory mechanisms. Their architecture also created an increased risk for copying errors. Thus, one cost of the genomic complexity that enabled human brain development may be a de novo error rate that results in the maintenance of schizophrenia in the population.

Autism has recently been shown to be associated with a significantly increased frequency of rare de novo mutations (Sebat et al, 2007). These results presage the identification of many more rare mutations associated with other neurodevelopmental illnesses, as advances in technology enable the detection of ever-smaller genomic lesions. The ultimate resolution of this debate lies in gene discovery, for which we encourage the application of study designs most likely to be fruitful.

Anticipation and the genetics of psychosis
A theoretical model should explain all of the observed facts. Both the model of schizophrenia which proposes many genes of small effect (McClellan et al, 2007) and that which proposes few genes of large effect (Craddock et al, 2007) explain many of the observed facts. In particular, the model of many genes of small effect explains the observed spectrum of mental illness, from bipolar disorder, through schizoaffective disorder to schizophrenia.

We have both observed schizophrenia occurring in particular families. One of us (M.A.) has studied a number of South-Asian families with multiple members with schizophrenia. In some of these families, patients of a second generation developed the illness at a much younger age than their parents and their illness was more severe. Thus far we have assumed that these observations were related to the concentration of many genes of small effect within these families.

Attention-deficit hyperactivity disorder and mood disorders in adults
Asherson et al (2007) raise some important issues regarding adult attention-deficit hyperactivity disorder (ADHD). They state that some symptoms of bipolar disorder are similar to those of ADHD but the distinction is not difficult. However, although ADHD and classic euphoric mania (bipolar I) may be distinct, differentiation of ADHD and bipolar disorder may be difficult, especially in bipolar II, bipolar-spectrum disorder and episodes of mixed symptomology. At times, it may be almost impossible to discriminate solely by symptoms. Irritability, excessive activity, impulsive behaviour, poor judgement and denial of problems are characteristic of both ADHD and bipolar disorder, thus making diagnosis difficult. The two also clearly occur together in some individuals: the reported overall lifetime prevalence of comorbid ADHD in people with bipolar disorder is 9.5% (Nierenberg et al, 2005); comorbidity with unipolar disorder is also frequent.

Asherson et al state that ADHD is a persistent trait whereas bipolar disorder is episodic. However, inter-episodic symptoms are common in bipolar disorder and the course of both bi- and unipolar disorder is frequently chronic; for example, up to 13% of people with bipolar disorder report continuous cycling without a well phase.
and 54% are not fully euthymic between episodes (Kupka et al., 2001). Children of mothers with bipolar I disorder have increased rates of both unipolar disorder and ADHD, further suggesting a neurobiological overlap of these three diagnoses. Hirshfeld-Becker et al. (2006) report significantly higher rates (23.5%) of ADHD in offspring of parents with bipolar disorder compared with psychiatric comparison parents (8.4%) and non-psychiatric comparison parents (4.2%).

Drug treatments also overlap. Stimulant-type medication has been used in bipolar depression, and newer medications such as atoxetine have similar pharmacological characteristics to some antidepressants (Lydon & El-Mallakh, 2006). Catecholaminergic antidepressants are not only potentially of benefit in ADHD but may be less likely to destabilise bipolar disorder.

There is thus a clinical and neurobiological overlap between ADHD, bipolar and unipolar disorder. Asherson et al.’s timely editorial has reminded us that ADHD in adults should not be overlooked and that further research is needed to clarify its impact on other adult psychopathology and comorbidity, particularly in mood disorders.


A. J. Kuan Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver BC, V6T 2A1, Canada. Email: anniekuan@gmail.com

A. H. Young Department of Psychiatry, University of British Columbia, Canada. doi: 10.1192/bjp.191.2.181a

Authors’ reply: Kuan & Young point out that further research into the role of mood symptoms in attention-deficit hyperactivity disorder (ADHD) is essential. In a recent study of 141 adults with ADHD, 93% were found to have mood symptoms, chiefly mood instability (Kooij, 2007). We observe that in adult ADHD mood instability frequently responds to stimulants over the same time course as core ADHD symptoms, an observation reported by others. This has led to the suggestion that mood dysregulation might represent a core impairment in adult ADHD, perhaps related to the same processes that cause dysregulation of other executive processes.

Despite these observations the relationship of ADHD to mood disorders is controversial. The controversy has arisen in the context of paediatric bipolar disorder, where the distinction from ADHD is made difficult if one chooses to view irritability as a sufficient manifestation of bipolar disorder and if the requirement for episodicity is not strictly applied. However, available validation studies for the construct of paediatric bipolar disorder use elation and/or grandiosity as cardinal symptoms, rather than irritability. Narrowly defined paediatric bipolar disorder can be differentiated from ADHD, shows longitudinal stability and has plausible familial aggregation patterns (Geller & Tillman, 2005; Geller et al., 2006). Recent evidence suggests that the narrowly defined disorder can be distinguished at the behavioural and electrophysiological level from broadly construed disorder (Rich et al., 2007). Conversely, it has been argued that the intensity of irritability (Mick et al., 2005) and its temporal pattern (chronic or episodic) can distinguish paediatric bipolar disorder from ADHD (Leibenluft et al., 2006). The family study of Hirshfeld-Becker et al. (2006) is intriguing, yet the sample size is small (12 families with bipolar I disorder, 11 with bipolar II disorder), and further work is needed to clarify the rates of ADHD among relatives with narrowly defined v. broadly defined bipolar disorder.

One of the main questions to be addressed relates to how valid a diagnostic concept broadly defined bipolar disorder is, or whether mood instability/irritability in the presence of ADHD may be more adequately described by a new dimension, such as mood dysregulation (Brotman et al., 2006). Until the relevant empirical data become available, we see merit in maintaining the classic definition of mania, so that a diagnosis of bipolar disorder requires euphoria, grandiosity and episodicity, and the differential between ADHD and bipolar disorder remains explicit.


Rainh IMPORTANT: This text has been truncated for demonstration purposes. Please refer to the full document for the complete content.
Genetic hypotheses for schizophrenia
T. Crow
Access the most recent version at DOI: 10.1192/bjp.191.2.180

References
This article cites 7 articles, 2 of which you can access for free at:
http://bjp.rcpsych.org/content/191/2/180.1#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;191/2/180

Downloaded from http://bjp.rcpsych.org/ on January 27, 2018
Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/