Cortisol and post-traumatic stress disorder in adults
Systematic review and meta-analysis*

MARIE-LOUISE MEEWISSE, JOHANNES B. REITSMA, GIEL-JAN DE VRIES, BERTHOLD P. R. GERSONS and MIRANDA OLFF

Background Post-traumatic stress disorder (PTSD) has inconsistently been associated with lower levels of cortisol.

Aims To compare basal cortisol levels in adults with current PTSD and in people without psychiatric disorder.

Method Systematic review and meta-analysis. Standardised mean differences (SMD) in basal cortisol levels were calculated and random-effects models using inverse variance weighting were applied.

Results Across 37 studies, 828 people with PTSD and 800 controls did not differ in cortisol levels (pooled SMD = -0.12, 95% CI = -0.32 to 0.080). Subgroup analyses revealed that studies assessing plasma or serum showed significantly lower levels in people with PTSD than in controls not exposed to trauma. Lower levels were also found in people with PTSD when females were included, in studies on physical or sexual abuse, and in afternoon samples.

Conclusions Low cortisol levels in PTSD are only found under certain conditions. Future research should elucidate whether low cortisol is related to gender or abuse and depends on the measurement methods used.

Declaration of interest None.

*This paper was presented at the International Society for Traumatic Stress Studies conference, Hollywood 4–7 November, 2006, and at the European Conference on Traumatic Stress, Opatija, 5–9 June, 2007.
overall analysis. If a study reported multiple types and times of measurements, the following hierarchy was used to select one measurement. Plasma samples were preferred above saliva, saliva above urine, and morning measurement above afternoon or evening. We used data from the earliest sample, or when measurements were related to time of awakening we selected the sample 30 min past awakening to be closest to the peak level of cortisol in the morning. For afternoon samples, we included the latest possible sample to compare circadian curves at the nadir of cortisol values. The Q-test was performed to examine whether there was more heterogeneity in the results than could be expected from chance alone. We also calculated the I^2 statistic, which expresses the percentage of total variation that can be attributed to heterogeneity rather than chance. Within this data-set, we also examined whether there were systematic differences between the types of measurement.

We then performed several specific subgroup analyses to examine whether the difference in cortisol levels between PTSD and control groups was influenced by other factors. Successive models were built to examine whether the SMD was significantly different in subgroups defined by a particular factor. The following factors were examined: time of measurement; gender; characteristics of the PTSD group, including type of trauma, years elapsed since trauma, presence or absence of comorbid depression; whether or not the control group was also exposed to trauma; and year of publication. Results of the subgroup analysis are presented as mean SMD together with 95% CI for each level of the factor. In addition, a formal test of interaction (e.g. whether the differences in SMD between the levels of the factor are zero) was performed to avoid overinterpretation of effects found in subgroups (Matthews & Altman, 1996; Altman & Bland, 2003).

The MIXED procedure in SAS version 9.1 for Windows was used to fit the various random-effects models as described by van Houwelingen et al. (2002). P-values less than 0.05 were considered statistically significant.

RESULTS

Search and inclusion

Our initial search identified 245 studies, of which 35 met our inclusion criteria (see data supplement to the online version of this paper). However, 6 only met the inclusion criteria when additional information was provided. Furthermore, 2 unpublished studies (Hopwood et al.; Kaloupek et al.) were identified. In 3 studies we excluded the traumatised control group (Yehuda et al., 1995a, 2002; Stein et al., 1997), because several people in these groups had a history of PTSD.

A total of 1628 people were included across all studies, with 828 with PTSD and 800 controls. The median sample size of the studies was 20 for people with PTSD (range 7–75) and 18 for controls (range 7–113).

Study characteristics

Each study included in the meta-analysis and the assessed variables are shown in a data supplement to the online version of this paper. Cortisol was either assessed in plasma/serum (24 studies), saliva (8), or 24 h urinary free cortisol samples (7), or a combination of two types of assessment. In 7 studies, both trauma-exposed and non-exposed controls were used as comparison groups, whereas comparison solely with traumatised or non-traumatised controls was made in 9 and 8 studies respectively. In the remaining 13 studies trauma-exposed and non-exposed individuals were combined or left undefined in the comparison group. Studies reported on the following populations: combat veterans (18 studies), victims of (childhood) sexual or physical abuse (6), refugees (3), and various trauma (8). Two studies did not report information about the types of trauma in their population. Twenty-four studies matched their participants with PTSD and controls for gender and 8 studies matched them for age. Few studies matched their participants for other criteria such as smoking, race or menstrual cycle. Potential confounding factors such as medication usage, exclusion criteria and dietary restrictions varied greatly across studies (see data supplement to online version of this paper).

Overall comparison

Figure 1 shows a forest plot of the SMD of cortisol levels in people with PTSD relative to controls in each of the 37 studies, grouped according to the type of measurement. There was no overall difference in pooled effect size between people with PTSD and controls (SMD = −0.12, 95% CI = −0.32 to 0.080, $P = 0.24$). There was significant heterogeneity in results between studies: the P-value for the Q-test for heterogeneity beyond chance was 0.0001 and I^2 was 71% (indicating that 71% of variation across studies can be attributed to heterogeneity rather than chance). In the situation that all studies were measuring the same SMD, only sampling variation would be present and I^2 would be zero (Higgins et al., 2003).

Type of assessment

We analysed whether the SMD in cortisol levels between people with PTSD and controls depended on the type of measurement: plasma/serum (24 studies), saliva (7), and 24 h urinary free cortisol (6). None of the measurements revealed differences between patients and controls (plasma/serum, SMD = −0.080, 95% CI = −0.32 to 0.17; saliva, SMD = −0.19, 95% CI = −0.63 to 0.26; 24 h urine, SMD = −0.20, 95% CI = −0.72 to 0.31).

Subgroup analyses

All the following subgroup analyses were performed with studies measuring cortisol in plasma/serum. The small numbers of studies measuring cortisol in saliva and urine prohibited any meaningful subgroup analysis.

Time of measurement

In this analysis we grouped studies according to whether measurements were taken between 08.00 and 09.00 h or in the afternoon. No differences were found for morning samples ($n = 15$ studies, SMD = −0.0006, 95% CI = −0.53 to 0.53, $P = 0.998$), whereas in the afternoon people with PTSD had lower levels of cortisol than controls ($n = 7$ studies, SMD = −0.79, 95% CI = −1.38 to −0.003, $P = 0.049$). However, the formal test for interaction did not reach significance, so the observed effect in the afternoon subgroup should be interpreted with caution (Fig. 2).

Gender

The influence of gender on cortisol level was examined in 10 studies which included only males and in 4 studies with only females. Whereas the analyses of cortisol in males with and without PTSD did not reveal any significant differences (SMD = 0.15, 95% CI = −0.06 to 0.37, $P = 0.16$), females with PTSD had highly significant lower cortisol levels than their comparison groups (SMD = −0.49, 95% CI = −0.86 to −0.13, $P = 0.009$). Because of this large difference in effect, significant interaction between male and female studies was also found.
significant interaction between types of trauma

-0.31, 0.31,

weighting.

are identified by first-named author. Pooled estimate based on random-effects model using inverse variance

were identified by first-named author. Pooled estimate based on random-effects model using inverse variance

-0.12; refugees, -0.12; refugees,

types of trauma (war veterans, types of trauma (war veterans,

To analyse whether the number of years

Ye ar s since trauma

in controls (in controls (

cantly lower cortisol levels in people withcantly lower cortisol levels in people with

(Fig. 2). Subgroup analysis revealed signifi-(Fig. 2). Subgroup analysis revealed signifi-

physical abuse, refugees and various traumaphysical abuse, refugees and various trauma

corted cortisol: war veterans, victims of sexual orcortisol: war veterans, victims of sexual or

enced the association between PTSD andenced the association between PTSD and

whether type of trauma might have influ-whether type of trauma might have influ-

CI CI

P P

0.11, 95% CI0.11, 95% CI

P P

0.03 to 0.34,0.03 to 0.34,

0.002). No differ-0.002). No differ-

0.005).0.005).

-0.078; 0.078;

0.52, 95% CI0.52, 95% CI

0.44 to 0.071,0.44 to 0.071,

0.015).

Combining all available data for meta-Combining all available data for meta-

Year of publication was examined to evalu-Year of publication was examined to evalu-

2, SMD 2, SMD

0.16). 0.16).

0.19, 95% CI0.19, 95% CI

P P

0.11 to 0.49,0.11 to 0.49,

0.058 to 0.058 to

0.071, 0.071,

0.015).

years since trauma

time categories: 0–10 years, 11–20 years and over 20 years. In studies where there were no such data, we approximated this time frame by using the duration of illness. For studies examining people with childhood abuse, we subtracted 12 years from their mean age. For those with war-related trauma we subtracted the year of study from the year in which that particular war ended. Among studies with the same time frame for years since trauma no differences were found for cortisol levels of people with PTSD and controls (0–10 years, n=8 studies, SMD=0.19, 95% CI

with PTSD compared with controls inwith PTSD compared with controls in

Comorbid depression
The effect of comorbid depression in people with PTSD on cortisol level was analysed in 13 studies that reported whether depression was present or absent within their PTSD group. If a single study used two subgroups with PTSD, with and without comorbid depression, we included both comparisons in the analysis (2 studies). The results (see Fig. 2) showed that depression had no influence on the effect sizes.

Year of publication

Year of publication was examined to evaluate whether improved methodology might strengthen possible contrasts between groups. Using all published studies, year of publication was linearly modelled to estimate the change in SMD per year. Figure 2 shows the effect on SMD over a 10-year period (1994–2004). Results could not confirm this hypothesis.

DISCUSSION

Main findings
In this systematic review we included 37 studies examining basal cortisol levels in adults with current PTSD in comparison with adults without psychiatric disorders published between 1980 and March 2005. Combining all available data for meta-analysis we found no systematic difference in basal cortisol levels between people with PTSD and controls. However, results were highly heterogeneous, indicating that differences between subgroups might be present. Subsequent explanatory subgroup analyses revealed that studies assessing plasma or serum reported significantly lower cortisol levels in people with PTSD compared with controls when compared with controls with no previous exposure to trauma. Lower cortisol levels were also found in people with PTSD compared with controls in studies including only females, in studies on physical or sexual abuse and in afternoon
samples. Although the general assumption is that cortisol levels are low in PTSD, we could not confirm this hypothesis even though we used homogeneous groups as a result of strict exclusion criteria. This study shows that low cortisol levels do not relate to PTSD in general, but rather seem to mirror trauma exposure and PTSD subgroups.

Type of assessment

The type of assessment (i.e. serum/plasma, saliva or 24 h urinary cortisol) did not account for the heterogeneity between the individual studies, and within studies using the same method of assessment, cortisol was not significantly different in people with PTSD compared with controls. It is important to stress the differences in the fluids used for cortisol measurement because of the varying compositions of cortisol in these fluids. Whereas salivary cortisol consists completely of the free (bioactive) fraction, in plasma less than 10% of cortisol is free. The majority is bound to cortisol-binding globulin (CBG) or other proteins and is biologically inactive. Changes in binding proteins can alter measured serum/plasma cortisol concentrations without influencing free concentrations (Hamrahian et al, 2004). Several conditions (e.g. pregnancy, hypothyroidism, marked adipositas) and oral contraceptive use are known to influence CBG levels (Westermann et al, 2004). However, only a few studies took this into account and excluded or matched on these features. Nevertheless, despite possible abnormal CBG levels in studies using plasma/serum measurements, differences in study results did not depend on body fluid used for cortisol assessment.

Time of assessment

Since cortisol has a circadian rhythm, with low values at awakening, followed by peak values 30 min after awakening and a steady decline during the rest of the day, time of assessment is expected to be an important factor in its measurement. Our findings revealed that during the afternoon, people with PTSD had significantly lower cortisol levels than controls. No such differences were found during the early morning. Since PTSD is known to be associated with difficulties in sleeping, and measures depended on fixed times, it is uncertain whether variability in awakening time between PTSD and controls influenced morning cortisol levels. Since cortisol secretion is relatively stable during the afternoon actual differences can be detected more easily.

Trauma-exposed v. non-exposed control groups

Some of the disparity in study results can be explained by whether studies used trauma-exposed or non-exposed controls. We found significantly lower plasma/serum cortisol levels in people with PTSD compared with controls not exposed to trauma but no such difference when comparisons were made with trauma-exposed controls. This suggests that differences in cortisol levels relate to being exposed to trauma generally rather than to PTSD.

Gender

In general, women appear to have a more sensitised HPA axis with lower overall plasma cortisol than men (Van Cauter et al, 1996), and our findings indicated that females with PTSD showed lower levels of basal cortisol than female controls. No such difference was apparent between males. This may explain why women are more vulnerable than men to the development of post-trauma symptoms and take longer to recover from them. In addition, the higher risk of PTSD in women may be due, at least in part, to the types of traumas they experience (more interpersonal violence, particularly of a sexual nature), to higher peri-traumatic dissociation in women, or to women’s use of avoidant coping strategies (Olff et al, 2007). Gender-specific
PTSD subgroups may exist – in particular arousal-related and dissociation-related variants – with distinct neuropsychological profiles and attendant symptoms. Hence, gender-specific psychobiological reactions to trauma may contribute to the higher risk for PTSD.

Physical or sexual abuse and years since trauma

Only people with PTSD due to physical or sexual abuse had lower cortisol levels than controls. This type of trauma is generally chronic and often starts in early development. An upbringing that is associated with adversity can produce detrimental effects on health (Fish *et al.*, 2004) and it is likely that within a critical phase during development, functioning of the HPA axis alters. Years elapsed since trauma had no pronounced influence on cortisol levels of people with PTSD. The time of onset of PTSD in development and the ongoing traumatising character of abuse might be more crucial in distinguishing abuse-related PTSD from other types of trauma. It should be noted that for statistical analyses we could not disentangle female gender from victims of abuse because of overlap in studies. Therefore, we could not examine whether low cortisol levels found in women with PTSD are due to gender or type of trauma preceding PTSD, or an interaction of both.

Comorbid depression

Comorbid depression in people with PTSD had no influence on the association between PTSD and cortisol level. Although there seems to be consensus that people with depression demonstrate high cortisol levels (Holsboer, 2001), generally this hyperactivation of the HPA axis is typically found in severe depression not specifically due to traumatic stress. In accordance with our findings, PTSD and comorbid PTSD/depression following traumatic injury were indistinguishable and reflected a shared vulnerability with a range of similar predictive non-biological variables. Comorbid PTSD/depression and PTSD alone may reflect one and the same construct (O’Donnell *et al.*, 2004), as appears to be confirmed by similar cortisol values within the present study.

Year of publication/sensitivity of assays

We also examined whether year of publication affected the relationship between PTSD and cortisol. This variable was included in our subgroup analysis to serve as a proxy for changes in protocol or the use of more sensitive assays during the study period. Year of publication had no impact on the results and therefore did not explain any of the heterogeneity in results across studies.

Limitations and future research

We acknowledge several limitations of our meta-analyses. First, despite our efforts to include unpublished studies, publication bias might still have obscured our results, as studies which find significant differences are more likely to be published. Second, we performed several subgroup analyses based on characteristics of the PTSD or control group and used these as study-level covariates in our model. Owing to incomplete reporting, we could not use all studies in the subgroup analyses. In some cases, only a few studies were available within a specific stratum, which caused problems related to chance findings and lack of power. Subgroup analyses within systematic reviews have to be interpreted with care because by nature they are post hoc analyses. They can provide additional insight but have to be confirmed in well-designed prospective studies with sufficient power to examine differences in effect by subgroups. Furthermore, individual appraisal and coping mechanisms are crucial in determining levels of stress hormones such as cortisol (Olff *et al.*, 2005a,b), factors that have not been systematically assessed in most of the literature. Finally, substantial differences in the methodology of studies hampered comparision. For instance, restrictions regarding smoking, alcohol, drugs and medication usage varied widely across studies. Although we attempted to pool data of studies on important characteristics, these restrictions and comorbid conditions known to confound cortisol levels remained unattended.

In future studies consensus in data collection and sampling protocol of basal diurnal cortisol would facilitate comparison of data across studies. Given that saliva samples can be obtained by study participants themselves in their own environment and related to time of awakening and that salivary cortisol consists completely of the bioactive fraction, future studies could overcome several difficulties by sampling salivary cortisol.

In summary, across 37 studies people with PTSD and healthy controls did not differ in cortisol levels. Nevertheless, support was found for low cortisol levels dependent on the type of control group and specific subpopulations. Significantly lower cortisol levels were found in people with PTSD when compared with non-exposed controls, whereas no such differences were found when compared with trauma-exposed controls without PTSD. Subgroup analyses further revealed lower cortisol in people who seem to be at the greatest risk for developing PTSD, i.e. women and physically or sexually abused victims. The lower cortisol values in PTSD found in the afternoon endorse the need to choose the time of measurement carefully. It is important to note that numerous factors – which are frequently overlooked – may have a confounding influence on cortisol levels. Therefore, disentangling the relationship between PTSD and cortisol is more complex than it first appears.

REFERENCES

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Type of trauma</th>
<th>Medication</th>
<th>Exclusion criteria</th>
<th>Diet</th>
<th>Gender, %</th>
<th>Matching</th>
<th>Type</th>
<th>Timing</th>
<th>Setting</th>
<th>n</th>
<th>Mean</th>
<th>s.d.</th>
<th>Years since trauma</th>
<th>Comorbid depression, %</th>
<th>Source</th>
<th>Age, years</th>
<th>n</th>
<th>Mean</th>
<th>s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemuz et al. (2003)</td>
<td>New York, USA</td>
<td>Childhood abuse</td>
<td>Various</td>
<td>Alcohol, tobacco</td>
<td>NR</td>
<td>100</td>
<td>Age, gender, race, men</td>
<td>Serum</td>
<td>Monday</td>
<td>Patients seeking psychotherapy</td>
<td>16</td>
<td>34</td>
<td>8</td>
<td>> 20</td>
<td>56.3</td>
<td>NR</td>
<td>15 (NE)</td>
<td>35</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Asemac et al. (2002)</td>
<td>Turkey</td>
<td>NR</td>
<td>2 weeks medication free</td>
<td>Other psychiatric disorders, endocrinological conditions, obesity, alcohol misuse, oral contraceptives</td>
<td>Fasting and no alcohol/coffee/smoking for 12 h</td>
<td>57.2</td>
<td>NR</td>
<td>Serum</td>
<td>08.00 h</td>
<td>Patients admitted to department of psychiatry</td>
<td>14</td>
<td>32.5</td>
<td>5.3</td>
<td>0–10</td>
<td>0</td>
<td>Hospital staff</td>
<td>14</td>
<td>29.9</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Bachmann et al. (2005)</td>
<td>Australia</td>
<td>Combat</td>
<td>Various</td>
<td>Other psychiatric disorders</td>
<td>Fasting and no substance misuse</td>
<td>NR</td>
<td>NR</td>
<td>Plasma</td>
<td>08.00 h</td>
<td>In- and out-patients involved in treatment</td>
<td>75</td>
<td>NR</td>
<td>NR</td>
<td>> 20</td>
<td>0</td>
<td>Combat controls</td>
<td>33 (TE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker et al. (1999)</td>
<td>Tennessee, USA</td>
<td>Combat</td>
<td>Medication free</td>
<td>Current alcohol misuse</td>
<td>Fasting and no smoking for 6 h</td>
<td>0</td>
<td>NR</td>
<td>Serum</td>
<td>24 h</td>
<td>0</td>
<td>11</td>
<td>42.5</td>
<td>9.2</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>12</td>
<td>41.4</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Bauer et al. (1994)</td>
<td>Germany</td>
<td>War refugees</td>
<td>No antidepressants, psychotropics and hormones</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Serum</td>
<td>14:00–16:00</td>
<td>Out-patients seeking treatment</td>
<td>12</td>
<td>NR</td>
<td>NR</td>
<td>> 20</td>
<td>NR</td>
<td>7.5</td>
<td>NR</td>
<td>20 (NE)</td>
<td>30.8</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Bonne et al. (2003)</td>
<td>Israel</td>
<td>Various</td>
<td>Various</td>
<td>Drug and alcohol misuse for 1 month, endocrinological/allergic disorders</td>
<td>No caffeine for 1 h</td>
<td>0</td>
<td>Age, gender</td>
<td>Serum</td>
<td>08:00–09:00</td>
<td>Patients admitted to ER</td>
<td>8</td>
<td>34</td>
<td>9</td>
<td>0–10</td>
<td>25</td>
<td>Patients admitted to ER</td>
<td>13 (TE)</td>
<td>35</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Gotovac et al. (2003)</td>
<td>Croatia</td>
<td>Combat</td>
<td>Various</td>
<td>Drug and alcohol misuse for 1 month, endocrinological/allergic disorders</td>
<td>No caffeine for 1 h</td>
<td>0</td>
<td>Age, gender</td>
<td>Serum</td>
<td>08:00–09:00</td>
<td>Patients admitted to ER</td>
<td>28</td>
<td>37</td>
<td>8.8</td>
<td>0–10</td>
<td>NR</td>
<td>NR</td>
<td>19 (NE)</td>
<td>35</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>Halbrecht et al. (1989)</td>
<td>New York, USA</td>
<td>Veterans</td>
<td>2 weeks medication free</td>
<td>Endocrine disorder</td>
<td>No caffeine for 1 h</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>13:00–16:00</td>
<td>Out-patients and patients in halfway houses</td>
<td>13</td>
<td>39</td>
<td>2.6</td>
<td>11–20</td>
<td>100</td>
<td>Newspaper advertisements and notices in medical centre</td>
<td>21</td>
<td>45.9</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>Hoffman et al. (1989)</td>
<td>Hobart, Tasmania,</td>
<td>Combat</td>
<td>Tranquillisers</td>
<td>Severe physical illness</td>
<td>No alcohol for 24 h</td>
<td>0</td>
<td>Age, gender</td>
<td>Serum</td>
<td>09:00–16:00</td>
<td>Out-patients</td>
<td>21</td>
<td>40</td>
<td>9.8</td>
<td>NR</td>
<td>0</td>
<td>Administrative hospital staff</td>
<td>20</td>
<td>39</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>Hopwood et al. (unpublished)</td>
<td>Heidelberg, Australia</td>
<td>Combat</td>
<td>2 weeks no psychotropics</td>
<td>Other current psychiatric disorder (except depression), endocrinological/cardiac/hepatic/renal/neurological disease, recent weight change</td>
<td>No smoking for 1 h</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>16:00 h</td>
<td>Out-patients</td>
<td>48</td>
<td>49.1</td>
<td>4</td>
<td>> 20</td>
<td>NR</td>
<td>VA</td>
<td>24 (TE)</td>
<td>48.6</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Jansen et al. (1997)</td>
<td>Seattle, USA</td>
<td>NR</td>
<td>4 months no medication affecting sympathetic nervous system, adrenomedullary or adrenocortical activity</td>
<td>Drug or alcohol misuse for 9 months</td>
<td>Overnight fasting</td>
<td>28.6</td>
<td>Gender</td>
<td>Plasma</td>
<td>09:00 h</td>
<td>Patients</td>
<td>7</td>
<td>45</td>
<td>4</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>7</td>
<td>35</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Kalouspek et al. (unpublished)</td>
<td>Massachusetts, USA</td>
<td>Veterans</td>
<td>Various</td>
<td>Drug or alcohol misuse for 3 months, organic disorder</td>
<td>Substance misuse for 6 months, no eating/ smoking for 1.5 h</td>
<td>64.7</td>
<td>Age, gender</td>
<td>Plasma</td>
<td>14:30, 14:45</td>
<td>Patients in- and out-patients involved in treatment</td>
<td>46</td>
<td>48.7</td>
<td>8.3</td>
<td>> 20</td>
<td>76.1</td>
<td>NR</td>
<td>43 (TE)</td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kellner et al. (2003)</td>
<td>Germany</td>
<td>Various</td>
<td>2 weeks medication free</td>
<td>Substance misuse for 6 months, organic disorder</td>
<td>No eating/ sleeping for 1.5 h</td>
<td>64.7</td>
<td>Age, gender</td>
<td>Plasma</td>
<td>14:30, 14:45</td>
<td>Patients</td>
<td>17</td>
<td>38.8</td>
<td>2.6</td>
<td>0–10</td>
<td>47.1</td>
<td>NR</td>
<td>17 (NE)</td>
<td>38.1</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Kasten et al. (1990)</td>
<td>Connecticut, USA</td>
<td>Veterans</td>
<td>Various</td>
<td>Current substance misuse, major medical illness</td>
<td>24 h urinary free cortisol</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>14:00–16:00</td>
<td>In-patients</td>
<td>11</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>54.5</td>
<td>NR</td>
<td>28</td>
<td>37</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Lauc et al. (2004)</td>
<td>Croatia</td>
<td>Combat</td>
<td>Various</td>
<td>Endocrine disorders</td>
<td>Fasting and no smoking for 1 h</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>Awakening < 30 min</td>
<td>Patients</td>
<td>26</td>
<td>36</td>
<td>6.3</td>
<td>0–10</td>
<td>NR</td>
<td>Veterans</td>
<td>16 (TE)</td>
<td>33.6</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Lindley et al. (2004)</td>
<td>California, USA</td>
<td>Various</td>
<td>2 weeks medication free</td>
<td>Other primary psychiatric diagnosis within 6 months, drug/alcohol misuse for 12 months, corticosteroid use, diabetes</td>
<td>No smoking for 1 h</td>
<td>88.2</td>
<td>Age, gender, race</td>
<td>Plasma</td>
<td>08:00 h</td>
<td>Recruited through advertisements</td>
<td>17</td>
<td>40.2</td>
<td>2.6</td>
<td>11–20</td>
<td>58.8</td>
<td>Radio and print advertisements</td>
<td>17</td>
<td>40.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Marshall et al. (2002)</td>
<td>New York, USA</td>
<td>Abuse</td>
<td>2 weeks medication free</td>
<td>Substance misuse within 6 months, oral contraceptives</td>
<td>Overnight fasting, no caffeine/alcoholic beverages/smoking before sampling</td>
<td>45</td>
<td>No matching</td>
<td>Plasma</td>
<td>09:30 h</td>
<td>Recruited through out-patient referrals and advertisements</td>
<td>7</td>
<td>31.7</td>
<td>7.0</td>
<td>0–10</td>
<td>57.1</td>
<td>Advertisements</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type of trauma</td>
<td>Medication</td>
<td>Exclusion criteria</td>
<td>Diet</td>
<td>Female, %</td>
<td>Matching</td>
<td>Age, years</td>
<td>PTSD</td>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Newport et al (2004)</td>
<td>Georgia, USA</td>
<td>Childhood abuse</td>
<td>No current psychotropic/ hormonal medication (except oral contraceptives)</td>
<td>Substance misuse within 6 months, pregnancy, lactation, eating disorder within 6 months, significant medical illness</td>
<td>NR</td>
<td>100</td>
<td>Gender</td>
<td>Plasma</td>
<td>08.00 h</td>
<td>Recruited through advertisements</td>
<td>20</td>
<td>32.4</td>
<td>7.6</td>
<td>> 20</td>
<td>75.0</td>
<td>Advertisements (15, TE), (19, NE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neylan et al (2003b)</td>
<td>California, USA</td>
<td>Combat</td>
<td>Antidepressant medications, mood-stabilizing agents</td>
<td>Other current psychiatric disorders, alcohol/substance misuse for 5 years, Head trauma/ neurological disorder/systemic illness affecting brain function</td>
<td>NR</td>
<td>0</td>
<td>Gender</td>
<td>Saliva</td>
<td>08.00 h</td>
<td>Recruited from VAMC and community</td>
<td>11</td>
<td>51.1</td>
<td>2.5</td>
<td>NR</td>
<td>0</td>
<td>VA and community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neylan et al (2003c)</td>
<td>California, USA</td>
<td>Combat</td>
<td>2 months psychotropic medication-free</td>
<td>Alcohol/substance misuse, history of brain disease, current systemic illness affecting CNS</td>
<td>Alcohol-free, and maximum 1 caffeine-free coffee per day for 2 weeks</td>
<td>NR</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>Morning</td>
<td>Recruited through VAMC and advertisements</td>
<td>24</td>
<td>49.4</td>
<td>5.7</td>
<td>NR</td>
<td>26.7</td>
<td>Web-based and newspaper advertisements and VAMC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pico-Alfonso et al (2004)</td>
<td>Spain</td>
<td>Abuse</td>
<td>Various</td>
<td>No current substance misuse</td>
<td>Sampling on each day after beginning menstruation</td>
<td>NR</td>
<td>100</td>
<td>Gender</td>
<td>Saliva</td>
<td>08.00-09.00 h</td>
<td>Recruited through 24 h centres for helping women and women's clubs</td>
<td>30</td>
<td>45</td>
<td>8.7</td>
<td>NR</td>
<td>56.7</td>
<td>24 h centres for helping women and women's clubs (69, TE), (44, NE), TE from women's clubs, Compensations claimants, Veterans Outreach Center and advertisements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitman & Orr (1990)</td>
<td>Massachusetts, USA</td>
<td>Combat</td>
<td>2 weeks psychotropics free</td>
<td>Current substance misuse</td>
<td>No</td>
<td>0</td>
<td>Age, gender, severity of combat exposure</td>
<td>24 h urinary free cortisol</td>
<td>Recruited through advertisements and referrals from VA Connecticut Healthcare System Anxiety Disorders Clinic</td>
<td>20</td>
<td>40.9</td>
<td>6</td>
<td>11-20</td>
<td>30.0</td>
<td>VA and community</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasmussen et al (2001)</td>
<td>Connecticut, USA</td>
<td>Various</td>
<td>4 weeks medication-free</td>
<td>Current eating disorder</td>
<td>4 weeks alcohol/drug-free, fasting and no smoking for 4 h</td>
<td>NR</td>
<td>100</td>
<td>Gender, smoking</td>
<td>Plasma</td>
<td>24 h urinary free cortisol</td>
<td>Recruited through advertisements and referrals from VA Connecticut Healthcare System Anxiety Disorders Clinic</td>
<td>12</td>
<td>37.3</td>
<td>2.1</td>
<td>NR</td>
<td>16.7</td>
<td>VA and community</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohleder et al (2004)</td>
<td>Germany</td>
<td>War refugees</td>
<td>Medication-free</td>
<td>Substance misuse</td>
<td>No</td>
<td>52</td>
<td>Age</td>
<td>Saliva</td>
<td>Awakening +30 min</td>
<td>Recruited from Psychosocial Center of Refugees. Mostly involved in treatment</td>
<td>12</td>
<td>42.7</td>
<td>10.0</td>
<td>0-10</td>
<td>16.7</td>
<td>Refugees and laboratory staff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seedat et al (2003)</td>
<td>California, USA</td>
<td>Abuse</td>
<td>6 weeks psychotropics and oral/intramuscular steroids free</td>
<td>Substance misuse, neurological disorders</td>
<td>No</td>
<td>100</td>
<td>Age, gender, socio-economic status</td>
<td>Plasma</td>
<td>09:00-12:00 h</td>
<td>Recruited through advertisements from community organisations for abused women</td>
<td>10</td>
<td>NR</td>
<td>0-10</td>
<td>NR</td>
<td>Advertisements (12, TE), and community organisations for abused women (16, NE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sondergard & Theorell (2003)</td>
<td>Sweden</td>
<td>War refugees</td>
<td>SSRIs</td>
<td>No</td>
<td>42</td>
<td>No matching</td>
<td>Serum</td>
<td>08:00-10:00 h</td>
<td>Recruited from recently granted asylum in Sweden</td>
<td>32</td>
<td>36.5</td>
<td>7.0</td>
<td>NR</td>
<td>30 (TE), (33, NE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spivak et al (2003)</td>
<td>Israel</td>
<td>Combat</td>
<td>No pharmacological medication</td>
<td>Alcohol/substance misuse, somatic disease</td>
<td>No</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>08:00-09:00 h</td>
<td>Women recruited through notices in waiting rooms in community women's health clinics</td>
<td>21</td>
<td>34.8</td>
<td>6.9</td>
<td>0-10</td>
<td>0</td>
<td>Veterans (some exposed to combat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stein et al (1997)</td>
<td>California, USA</td>
<td>Childhood and adolescent abuse</td>
<td>Various</td>
<td>Current alcohol/substance misuse, neurological disorders, significant medical illness, morbid obesity</td>
<td>No</td>
<td>100</td>
<td>Gender</td>
<td>Plasma</td>
<td>08:00 h</td>
<td>Recruited through notices in waiting rooms in community women's health clinics</td>
<td>13</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Notice in waiting rooms in community women's health clinics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** характеристики исследований включенные в мета-анализ кортизола в посттравматическом стрессовом расстройстве (продолжение)**

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Type of trauma</th>
<th>Medication</th>
<th>Exclusion criteria</th>
<th>Diet</th>
<th>Female, %</th>
<th>Matching</th>
<th>Age, years</th>
<th>PTSD</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newport et al (2004)</td>
<td>Georgia, USA</td>
<td>Childhood abuse</td>
<td>No current psychotropic/ hormonal medication (except oral contraceptives)</td>
<td>Substance misuse within 6 months, pregnancy, lactation, eating disorder within 6 months, significant medical illness</td>
<td>NR</td>
<td>100</td>
<td>Gender</td>
<td>Plasma</td>
<td>08.00 h</td>
<td>Recruited through advertisements</td>
</tr>
<tr>
<td>Neylan et al (2003b)</td>
<td>California, USA</td>
<td>Combat</td>
<td>Antidepressant medications, mood-stabilizing agents</td>
<td>Other current psychiatric disorders, alcohol/substance misuse for 5 years, Head trauma/ neurological disorder/systemic illness affecting brain function</td>
<td>NR</td>
<td>0</td>
<td>Gender</td>
<td>Saliva</td>
<td>08.00 h</td>
<td>Recruited from VAMC and community</td>
</tr>
<tr>
<td>Neylan et al (2003c)</td>
<td>California, USA</td>
<td>Combat</td>
<td>2 months psychotropic medication-free</td>
<td>Alcohol/substance misuse, history of brain disease, current systemic illness affecting CNS</td>
<td>Alcohol-free, and maximum 1 caffeine-free coffee per day for 2 weeks</td>
<td>NR</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>Morning</td>
</tr>
<tr>
<td>Pico-Alfonso et al (2004)</td>
<td>Spain</td>
<td>Abuse</td>
<td>Various</td>
<td>No current substance misuse</td>
<td>Sampling on each day after beginning menstruation</td>
<td>NR</td>
<td>100</td>
<td>Gender</td>
<td>Saliva</td>
<td>08.00-09.00 h</td>
</tr>
<tr>
<td>Pitman & Orr (1990)</td>
<td>Massachusetts, USA</td>
<td>Combat</td>
<td>2 weeks psychotropics free</td>
<td>Current substance misuse</td>
<td>No</td>
<td>0</td>
<td>Age, gender, severity of combat exposure</td>
<td>24 h urinary free cortisol</td>
<td>Recruited through advertisements and referrals from VA Connecticut Healthcare System Anxiety Disorders Clinic</td>
<td>20</td>
</tr>
<tr>
<td>Rasmussen et al (2001)</td>
<td>Connecticut, USA</td>
<td>Various</td>
<td>4 weeks medication-free</td>
<td>Current eating disorder</td>
<td>4 weeks alcohol/drug-free, fasting and no smoking for 4 h</td>
<td>NR</td>
<td>100</td>
<td>Gender, smoking</td>
<td>Plasma</td>
<td>24 h urinary free cortisol</td>
</tr>
<tr>
<td>Rohleder et al (2004)</td>
<td>Germany</td>
<td>War refugees</td>
<td>Medication-free</td>
<td>Substance misuse</td>
<td>No</td>
<td>52</td>
<td>Age</td>
<td>Saliva</td>
<td>Awakening +30 min</td>
<td>Recruited from Psychosocial Center of Refugees. Mostly involved in treatment</td>
</tr>
<tr>
<td>Seedat et al (2003)</td>
<td>California, USA</td>
<td>Abuse</td>
<td>6 weeks psychotropics and oral/intramuscular steroids free</td>
<td>Substance misuse, neurological disorders</td>
<td>No</td>
<td>100</td>
<td>Age, gender, socio-economic status</td>
<td>Plasma</td>
<td>09:00-12:00 h</td>
<td>Recruited through advertisements from community organisations for abused women</td>
</tr>
<tr>
<td>Sondergard & Theorell (2003)</td>
<td>Sweden</td>
<td>War refugees</td>
<td>SSRIs</td>
<td>No</td>
<td>42</td>
<td>No matching</td>
<td>Serum</td>
<td>08:00-10:00 h</td>
<td>Recruited from recently granted asylum in Sweden</td>
<td>32</td>
</tr>
<tr>
<td>Spivak et al (2003)</td>
<td>Israel</td>
<td>Combat</td>
<td>No pharmacological medication</td>
<td>Alcohol/substance misuse, somatic disease</td>
<td>No</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>08:00-09:00 h</td>
<td>Women recruited through notices in waiting rooms in community women's health clinics</td>
</tr>
<tr>
<td>Stein et al (1997)</td>
<td>California, USA</td>
<td>Childhood and adolescent abuse</td>
<td>Various</td>
<td>Current alcohol/substance misuse, neurological disorders, significant medical illness, morbid obesity</td>
<td>No</td>
<td>100</td>
<td>Gender</td>
<td>Plasma</td>
<td>08:00 h</td>
<td>Recruited through notices in waiting rooms in community women's health clinics</td>
</tr>
</tbody>
</table>
Characteristics of studies included in meta-analysis of cortisol in post-traumatic stress disorder (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Type of trauma</th>
<th>Medication</th>
<th>Exclusion criteria</th>
<th>Diet</th>
<th>Female, %</th>
<th>Matching</th>
<th>Assessment characteristics</th>
<th>PTSD</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucker et al. (2004)</td>
<td>Oklahoma, USA</td>
<td>Various</td>
<td>Various</td>
<td>Alcohol/substance misuse for 6 months, severe medical conditions</td>
<td>Fasting for 15 min, no caffeine/ nicotine before visit</td>
<td>NR</td>
<td>No matching</td>
<td>Plasma</td>
<td>08.00 h</td>
<td>38.18</td>
</tr>
<tr>
<td>Yehuda et al. (2002)</td>
<td>New York, USA</td>
<td>Holocaust and combat</td>
<td>Various</td>
<td>Current alcohol/substance misuse. Major medical endocrinological, neurological illness, clinical obesity</td>
<td>NR</td>
<td>No matching</td>
<td>Plasma</td>
<td>08.00 h</td>
<td>39</td>
<td>15.9</td>
</tr>
<tr>
<td>Yehuda et al. (1990)</td>
<td>Connecticut, USA</td>
<td>Combat</td>
<td>Medication free</td>
<td>Current alcohol/substance misuse, major medical illness, endocrinological disorder</td>
<td>NR</td>
<td>0</td>
<td>Gender</td>
<td>Plasma</td>
<td>08.00 h</td>
<td>43.9</td>
</tr>
</tbody>
</table>

1. Rate reflects comorbid depression and dysthymia.
2. Age and comorbid depression represent a total of 58 people instead of 51.

DATA SUPPLEMENT TO BRITISH JOURNAL OF PSYCHIATRY (2007) 191, 387–392
Cortisol and post-traumatic stress disorder in adults: Systematic review and meta-analysis
MARIE-LOUISE MEEWISSE, JOHANNES B. REITSMA, GIEL-JAN DE VRIES, BERTHOLD P. R.
GERSONS and MIRANDA OLFF
Access the most recent version at DOI: 10.1192/bjp.bp.106.024877

Supplementary Material
Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2007/11/01/191.5.387.DC1

References
This article cites 49 articles, 3 of which you can access for free at:
http://bjp.rcpsych.org/content/191/5/387#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters-submit/bjprcpsych;191/5/387

Downloaded from
http://bjp.rcpsych.org/ on April 13, 2017
Published by The Royal College of Psychiatrists