The 5HTTLPR genetic variant of the serotonin transporter gene (SERT or 5-HTT), which is comprised of a short (SERT-s) and a long (SERT-l) allele, is associated with major depressive disorder and post-traumatic brain disorder.

Aims
The present study sought to determine whether the total thalamus and major subregions are altered in size in major depressive disorder and in relation to the 5HTTLPR genotype.

Method
We investigated the influence of 5HTTLPR genotype, psychiatric diagnosis, suicide and other clinical factors on the volume of the entire post-mortem thalamus.

Results
Major depressive disorder, SERT-ss genotype and suicide emerged as independent factors contributing to an enlargement of the total thalamus. The majority of the volume enlargement associated with the SERT-ss genotype occurred in the pulvinar, whereas enlargement associated with major depressive disorder occurred in the limbic nuclei and in other regions of the thalamus. A history of antidepressant treatment was associated with reduced thalamic volume.

Conclusions
The 5HTTLPR genetic variation may affect behaviour and psychiatric conditions, in part, by altering the anatomy of the thalamus.

Declaration of interest
None. Funding detailed in Acknowledgements.

Method
A total of 54 specimens from the Stanley Foundation Brain Collection with a complete series of thalamic sections matched for age, gender and post-mortem interval were utilised. Controls were never diagnosed with psychiatric illness. Individuals with a psychiatric illness were diagnosed with major depressive disorder, bipolar disorder or schizophrenia. About half died by suicide. Individuals from each of the three psychiatric diagnoses, and from suicide (12/17) and non-suicide (11/22) categories, had been treated with antidepressants. Information on age, post-mortem interval, time in formalin, gender and hemisphere sampled is provided in Table 1.

The entire thalamus from the formalin-fixed hemisphere was serially sectioned at 60 μm thickness in the coronal plane, mounted on glass slides and stained for Nissl with cresyl violet. Thalamic borders were outlined in Nissl-stained sections using a microscopic imaging system. The lateral thalamic boundary was defined as the border of the reticular nucleus, and the ventrolateral border was defined by the medial geniculate nucleus. The lateral geniculate nucleus was not included in the total thalamic volume assessment. Cavalieri procedure (StereoInvestigator PC software, version 6; MicroBrightField Inc, Williston, Vermont, USA) was used to estimate thalamic volumes. Results are reported as volume corrected for post-sectioning shrinkage in the z-axis.

A sample of DNA was extracted from frozen cerebellar tissue using the QIAAmp DNA mini-kit, Qiagen, and 5HTTLPR genotype was determined in duplicate assays using polymerase chain reaction. Oligonucleotide primers flanking 5HTTLPR and corresponding to the nucleotide positions 1416 to 1397 (STPR5, STPR6) were used. The entire thalamus from the formalin-fixed hemisphere was serially sectioned at 60 μm thickness in the coronal plane, mounted on glass slides and stained for Nissl with cresyl violet. Thalamic borders were outlined in Nissl-stained sections using a microscopic imaging system. The lateral thalamic boundary was defined as the border of the reticular nucleus, and the ventrolateral border was defined by the medial geniculate nucleus. The lateral geniculate nucleus was not included in the total thalamic volume assessment. Cavalieri procedure (StereoInvestigator PC software, version 6; MicroBrightField Inc, Williston, Vermont, USA) was used to estimate thalamic volumes. Results are reported as volume corrected for post-sectioning shrinkage in the z-axis. A sample of DNA was extracted from frozen cerebellar tissue using the QIAAmp DNA mini-kit, Qiagen, and 5HTTLPR genotype was determined in duplicate assays using polymerase chain reaction. Oligonucleotide primers flanking 5HTTLPR and corresponding to the nucleotide positions 1416 to 1397 (STPR5, STPR6) were used.
5’-GGCGTGTCGCGCTGAATGC) and 910 to 888 (STPR3, 5’-GAGGGACTGAGCTGGACAACCAC) were used to generate 484- and 528-base-pair fragments. The assay consisted of a modified touchdown polymerase chain reaction protocol with an antibody-mediated hot start. The polymerase chain reaction products were visualised by running on a 1.8% agarose gel with ethidium bromide.

Owing to the many uncontrolled clinical and post-mortem variables present in the cohort, our primary analysis was performed with analysis of covariance (ANCOVA: JMP Macintosh software, version 5.01a) of the whole cohort (all individuals n=34). The ANCOVA was repeated for individuals with psychiatric illness alone (n=39) so that we could analyse the effects of additional variables present only in these individuals. Covariates in the complete ANCOVA were diagnosis, age, hemisphere, time in formalin and post-mortem interval, with suicide and treatment with antidepressants added as additional cofactors in the ANCOVA subgroup of individuals with psychiatric illness. A truncated genotype categorisation was used for the primary analysis (SERT-ss vs. SERT-sl/ll) in order to maintain statistical power. After these primary analyses were complete, we performed exploratory testing such as reanalysing the data with a full factorial genotyping model, only individuals with SERT-ss genotype had an enlarged thalamus compared with individuals with either SERT-sl or SERT-ll genotypes. Therefore, we conclude that 26% (167/654 mm³) of the thalamus was associated with an 8% enlargement that can be allocated to the remaining nuclei of the thalamus, whereas antidepressant treatment was associated with an 18% lower total thalamic volume. The antidepressant effect was most evident in the schizophrenia group, which was relatively well-balanced for positive and negative histories of antidepressant usage. The nine covariate factors in the second ANCOVA produced a highly informative model predicting total thalamus volume (r²=0.793, P<0.0001). As a post hoc validation of the subgroup ANCOVA findings, we performed forward stepwise multiple regression for individuals with psychiatric illness alone. All of the above significant covariates, except for time in formalin and hemisphere, were identified in the stepwise regression model as significant and independent predictors of total thalamic volume. Also, we performed an exploratory ANCOVA using thalamic volume normalised for whole brain weight. The SERT-ss genotype and major depressive disorder diagnosis effects remained significant in this analysis, supporting a selective effect of these variables on thalamic volume as compared with the brain as a whole. To clarify SERT allele effects, we removed post-mortem interval (a non-significant factor in all models) and substituted the two-way with a three-way genotype categorisation (SERT-ss vs. SERT-sl v. SERT-ll). In this exploratory ANCOVA, only individuals with SERT-ss genotype had an enlarged thalamus compared with individuals with either SERT-sl or SERT-ll genotypes; individuals with SERT-sl and SERT-ll genotypes were not significantly different from each other.

Regional effects associated with SERT-ss and major depressive disorder

We had previously determined volumes of mediodorsal, anteroventral/antememorial and pulvinar nuclei in the samples used in the current study (Fig. 1). In the previous studies, we observed that major depressive disorder was associated with significant enlargement of the limbic (mediodorsal and anteroventral/antememorial) thalamus, and that SERT-ss genotype was primarily associated with enlargement of the pulvinar nuclei. The present study indicates a mean total thalamic volume enlargement of 654 mm³ associated with major depressive disorder, and of 444 mm³ associated with the SERT-ss genotype (Fig. 1). Our previously published data indicate that in the limbic thalamus there was a mean 167 mm³ volume enlargement associated with major depressive disorder, and in the pulvinar there was a mean 256 mm³ volume enlargement associated with the SERT-ss genotype. Therefore, we conclude that 26% (167/654 mm³) of the total enlargement associated with major depressive disorder occurs in the limbic thalamus, and that 57% (256/444 mm³) of the total enlargement associated with SERT-ss genotype occurs in the pulvinar. Figure 1 illustrates the localisation of SERT-ss and major depressive disorder enlargement effects in limbic and pulvinar subregions of the thalamus and, by subtraction, the enlargement that can be allocated to the remaining nuclei of the thalamus.

Table 1 Specimen characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Major depressive disorder</th>
<th>Bipolar disorder</th>
<th>Schizophrenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Age, years: mean (s.d.)</td>
<td>48.1 (10.7)</td>
<td>45.2 (8.1)</td>
<td>43.7 (12.0)</td>
<td>44.3 (13.5)</td>
</tr>
<tr>
<td>Post-mortem interval, h: mean (s.d.)</td>
<td>23.7 (9.9)</td>
<td>28.0 (10.8)</td>
<td>31.8 (17.0)</td>
<td>34.1 (16.3)</td>
</tr>
<tr>
<td>Brain weight, g: mean (s.d.)</td>
<td>150 (164)</td>
<td>146 (145)</td>
<td>1453 (156)</td>
<td>1467 (111)</td>
</tr>
<tr>
<td>Time in formalin, months: mean (s.d.)</td>
<td>4.4 (3.4)</td>
<td>8.0 (6.6)</td>
<td>9.3 (3.7)</td>
<td>12.3 (9.1)</td>
</tr>
<tr>
<td>Left hemisphere sampled, %</td>
<td>46</td>
<td>36</td>
<td>54</td>
<td>42</td>
</tr>
<tr>
<td>Female, %</td>
<td>40</td>
<td>43</td>
<td>38</td>
<td>33</td>
</tr>
</tbody>
</table>

Results

Overall, 14 people possessed the SERT-ss genotype (bipolar disorder 2/13, major depressive disorder 5/14, schizophrenia 5/12, controls 2/15), and 16 possessed the SERT-ll genotype (bipolar disorder 3/13, major depressive disorder 3/14, schizophrenia 2/12, controls 6/15). People with a SERT-sl genotype were not significantly different with respect to age, gender, suicide, diagnosis, substance or alcohol misuse from people with a SERT-sl/ll genotype (P>0.05).

Total thalamic volume

For the analysis of the 54 samples from all four diagnostic categories, covariate effects were observed for SERT genotype (ss>sl/ll), diagnosis (major depressive disorder>others), gender (male>female), age (4.6% reduction per decade), but not hemisphere, time in formalin or post-mortem interval (see Table 2 and online Fig. DS1). Inspection of the ANCOVA least squared means indicates a significant 11% thalamic enlargement between individuals with SERT-ss genotype v. SERT sl/ll genotype, and a significant 12% enlargement in people with major depressive disorder compared with controls. The subgroup ANCOVA limited to people with psychiatric illness revealed similar covariate effects for SERT genotype, diagnosis, gender and age (Table 2). In addition, we observed significant covariate effects for time in formalin (0.3% reduction per month), hemisphere (right>left), suicide (suicide>non-suicide) and antidepressant medication (non-treatment>treatment). Suicide was associated with an 8% enlargement of the thalamus, whereas antidepressant treatment was associated with an 18% lower total thalamic volume. The antidepressant effect was most evident in the schizophrenia group, which was relatively well-balanced for positive and negative histories of antidepressant usage. The nine covariate factors in the second ANCOVA produced a highly informative model predicting total thalamus volume (r²=0.793, P<0.0001). As a post hoc validation of the subgroup ANCOVA findings, we performed forward stepwise multiple regression for individuals with psychiatric illness alone. All of the above significant covariates, except for time in formalin and hemisphere, were identified in the stepwise regression model as significant and independent predictors of total thalamic volume. Also, we performed an exploratory ANCOVA using thalamic volume normalised for whole brain weight. The SERT-ss genotype and major depressive disorder diagnosis effects remained significant in this analysis, supporting a selective effect of these variables on thalamic volume as compared with the brain as a whole. To clarify SERT allele effects, we removed post-mortem interval (a non-significant factor in all models) and substituted the two-way with a three-way genotype categorisation (SERT-ss v. SERT-sl v. SERT-ll). In this exploratory ANCOVA, only individuals with SERT-ss genotype had an enlarged thalamus compared with individuals with either SERT-sl or SERT-ll genotypes; individuals with SERT-sl and SERT-ll genotypes were not significantly different from each other.

Regional effects associated with SERT-ss and major depressive disorder

We had previously determined volumes of mediodorsal, anteroventral/antememorial and pulvinar nuclei in the samples used in the current study (Fig. 1). In the previous studies, we observed that major depressive disorder was associated with significant enlargement of the limbic (mediodorsal and anteroventral/antememorial) thalamus, and that SERT-ss genotype was primarily associated with enlargement of the pulvinar nuclei. The present study indicates a mean total thalamic volume enlargement of 654 mm³ associated with major depressive disorder, and of 444 mm³ associated with the SERT-ss genotype (Fig. 1). Our previously published data indicate that in the limbic thalamus there was a mean 167 mm³ volume enlargement associated with major depressive disorder, and in the pulvinar there was a mean 256 mm³ volume enlargement associated with the SERT-ss genotype. Therefore, we conclude that 26% (167/654 mm³) of the total enlargement associated with major depressive disorder occurs in the limbic thalamus, and that 57% (256/444 mm³) of the total enlargement associated with SERT-ss genotype occurs in the pulvinar. Figure 1 illustrates the localisation of SERT-ss and major depressive disorder enlargement effects in limbic and pulvinar subregions of the thalamus and, by subtraction, the enlargement that can be allocated to the remaining nuclei of the thalamus.
thalamus. The data indicate that the majority of enlargement associated with SERT-ss occurs in the pulvinar, whereas a relatively large portion of that associated with major depressive disorder occurs outside of the limbic and pulvinar thalamic regions.

Discussion

The present data indicate that both the SERT-ss genotype and major depressive disorder influence the total volume of the thalamus. The thalamus is enlarged by approximately 11% in people carrying the SHTTLPR SERT-ss genotype. A similar magnitude enlargement of the thalamus, independent from the SHTTLPR effect, was observed in people with major depressive disorder compared with controls. Thalamic enlargement is not likely to be related to an overall larger brain in people with SERT-ss genotype and major depressive disorder because the thalamic enlargement effect remained significant after normalising for whole brain weight. Although we did not measure total thalamic neuron number in the present study, we have previously observed that both volume and neuron number are increased in the pulvinar in people with SERT-ss genotype and in the limbic thalamus of people with major depressive disorder.7,13

Thalamic volume and SERT-ss

The present data suggest that the SERT-ss thalamic enlargement is particularly robust in the pulvinar, since 57% of the total thalamic enlargement occurs in this nucleus (which occupies about 30% of the thalamus). We also found preliminary evidence that SERT-ss enlargement is present in the limbic thalamus (mediodorsal and anteroventral/anteromedial), where 26% of the total thalamic enlargement occurred. Combining these results, the great majority (83%) of SERT-ss thalamic enlargement occurs in these two regions, which together comprise about a half of the entire thalamus. Both the pulvinar and limbic thalamus contain a dense plexus of SERT-containing serotonin fibres, with the pulvinar in particular being a site of very dense 5-HT innervation. It is striking that the pulvinar and midline thalamic regions, which contain a very dense plexus of SERT-containing fibres, are sites of major anatomic changes associated with inheritance of the SERT-ss genetic variation.14 The high density of SERT in these regions may provide a substrate for SHTTLPR-associated alterations in 5-HT neurotransmission to affect both thalamic anatomy and function. In addition to the high levels of SERT present in the mature thalamus, SERT is also critically involved in shaping the anatomy of both the thalamus and cortex during development. For instance, in SERT knockout mice, the complex patterning of thalamocortical connectivity is altered, and there is a reduction in programmed cell death in the thalamus.15,16 Furthermore, during the period when thalamic fibres first reach the cortex, some glutamatergic thalamocortical neurons transiently express SERT on their axons.17 Further study is needed to investigate how SHTTLPR genetic variation influences the development of the thalamus.

<table>
<thead>
<tr>
<th>Table 2 Total thalamic volume: analysis of covariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SERT-ss</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Hemisphere</td>
</tr>
<tr>
<td>Post-mortem interval</td>
</tr>
<tr>
<td>Time in formalin</td>
</tr>
<tr>
<td>Antidepressants*</td>
</tr>
<tr>
<td>Suicide*</td>
</tr>
</tbody>
</table>

*NS, not significant; SERT-ss, SERT-ss genotype v. SERT-sl/l genotype combined.

* History of antidepressant use and suicide not included as covariates in this ANCOVA.

Fig. 1 Illustration of the thalamus.

(a) The location of the pulvinar (PUL) and limbic (mediodorsal (MD) and anteroventral/anteromedial (AV/AM)) regions of the thalamus. The remainder of the thalamus is comprised of a variety of nuclei. Pie charts: area enlarged in the SERT-ss genotype group (b) and the major depressive disorder group (c). The majority (57%) of the total thalamic enlargement related to the SERT-ss genotype occurs in the pulvinar (b), whereas that associated with major depressive disorder occurs primarily outside of the pulvinar and limbic thalamus (c). Adapted from Carpenter & Sutin.12
Anatomical changes in the thalamus associated with 5HTTLPR may contribute to genetic susceptibility to major depressive disorder, post-traumatic stress disorder and other conditions (e.g. suicide and anxiety). Functionally, the pulvinar processes information related to environmental threat, such as facially expressed fear, and relays this information to important nodes in the limbic system. Both the pulvinar and the limbic thalamus are intimately connected to the anterior cingulate cortex, a brain area involved in processing internally generated thoughts, emotional responses to pain and attention to negative consequences. In major depressive disorder, there is evidence that elevated levels of introspection, rumination (brooding) and attention to negative facial expressions are very common, and display trait rather than state variability. Given the intimate connections of the pulvinar and limbic thalamus to the limbic system, thalamic enlargement may contribute to behavioural problems in major depressive disorder and other mood disorders by facilitating activity of the anterior cingulate and other limbic centres. Interestingly, Greicius et al have shown that resting-state functional connectivity between the medial thalamus and the anterior cingulate is accentuated in major depressive disorder, with the most affected areas being found in the medial thalamus and pulvinar. Our data suggest that thalamic enlargement represents a possible explanation for this accentuated functional connectivity. Furthermore, because of the close anatomical connections between the thalamus and the limbic system, thalamic anatomical changes in people with SERT-ss genotype may directly contribute to 5HTTLPR-associated reductions in grey matter volume in the amygdala and cingulate cortex. These anatomical substrates may be future targets for surgical interventions. It has been demonstrated that deep brain stimulation of the white matter tracts connecting the thalamus with the anterior cingulate alleviates symptoms of severe depression. It will be interesting to determine whether the efficacy of deep brain stimulation is related to the interruption of excessive thalamic input to the cingulate cortex. Thus, although it is clear that 5HTTLPR genetic variation could have an effect on 5-HT neurotransmission and behaviour by altering SERT kinetics and affecting 5-HT levels in the mature brain, the present data support an alternative hypothesis implicating 5HTTLPR-related alterations in brain anatomy as being important factors in mediating major depressive disorder and other affective states.

Thalamic volume and psychiatric symptoms

In addition to SERT-ss effects on the volume of the thalamus, we observed that people diagnosed with major depressive disorder have 12% larger thalami compared with controls. Previously, we reported that limbic nuclei, but not the pulvinar, were enlarged in people with major depressive disorder. However, since the previously observed limbic enlargement (mediodorsal and anteroventral/anteromedial) represents only 26% of the total thalamic enlargement, there must be a substantial enlargement in other thalamic regions in major depressive disorder. Possibilities for the site of this enlargement include nuclei of the ventral tier (ventroanterior, ventrolateral) and a variety of smaller nuclei (reticular, centromedian, laterodorsal, medial geniculate).

The present data suggest that death by suicide is associated with thalamic enlargement in people with psychiatric illness. Notice in online Fig. DSI that many of the individuals that died by suicide (marked in red) had large thalami. Although other subcortical structures such as the adrenal glands and pituitary are enlarged in people likely to die by suicide, the present data represent the first evidence for enlargement of the thalami in suicide. Like major depressive disorder, suicide has been linked to developmental stress, including physical and sexual abuse, which have profound influences on brain serotonin. As described above, it may be possible that developmental stress and trauma exacerbate thalamic enlargement by potentiating 5HTTLPR effects on serotonergic neurotransmission during a critical developmental period. If that is the case, then thalamic enlargement may be an example of an anatomical substrate affected by a serotonergic gene x environment interaction.

Further research

The present data indicate that there was a twofold variation in thalamic volume among the people investigated in this study. Multiple factors, including post-mortem, clinical and genetic factors, contributed to this variation. It is notable that the ANCOVA model produced by controlling for nine cofactors captured a substantial portion of this variation (r²=0.79). The success of the model sets limits on improvements that could be made by inclusion of additional genetic variants or clinical factors. Thus, careful attention to clinical factors such as SERT genetic background, suicidality and antidepressant treatment, not normally controlled for in structural brain studies, may provide a means to decrease variability and improve power in post-mortem and structural MRI studies.

In summary, the present data indicate that a diagnosis of major depressive disorder, SERT-ss genotype and suicide are associated with thalamic hypertrophy, whereas people with a history of treatment with antidepressants have smaller thalami. Individuals with enlarged thalami may have an anatomical vulnerability to stress, owing to alterations in thalamocortical circuit function. The present findings support the broad hypothesis that a 5-HT-linked brain structural phenotype, characterised in part by thalamic enlargement, may predispose individuals to symptoms of depression and to related behaviours such as suicide.

Keith A. Young, PhD, Willy L. Bonkale, PhD, Leilah A. Holcomb, PhD, Paul B. Hecks, MD, PhD, Neuropsychiatry Research Program, Central Texas Veterans Health Care System and Texas A&M Health Science Center Department of Psychiatry and Behavioral Science, Temple, Texas; Dwight C. German, PhD, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA

Correspondence: Keith A. Young, Neuropsychiatry Research Program, Central Texas Veterans Health Care System and Texas A&M Health Science Center Department of Psychiatry and Behavioral Science, 1901 S. 1st Street, Temple, TX 76504, USA. Email: kayoung@medicine.tamhsc.edu

(Received 16 Apr 2007, final revision 27 Aug 2007, accepted 1 Oct 2007)
Acknowledgements

We thank the Stanley Foundation Neuropathology Consortium (M. Knable, F. Torrey, M. Webster and F. Yolken) for providing tissue used in this study. The technical assistance of Samantha Sachsemmer and Umar Yazdani, and the editorial expertise of Laura Miller are greatly appreciated. The National Institute of Mental Health (MH59145), the Veterans Administration, the Ziegben Memorial Fund, and the Theodore and Vada Stanley Foundation financially supported this work.

References

7 Young KA, Holcomb LA, Yokland WI, Hicks PB, Yazdani U, German DC. SHTTLPR polymorphism and enlargement of the pulvinar: Unlocking the backdoor to the limbic system. Biol Psychiatry 2007; 61: 813–18.

12 Carpenter MB, Sutin J. Human Neuroanatomy (8th edn). Williams & Wilkins, 1983.

100 words

Psychosis – the price Homo sapiens pays for language

Tim Crow

Age- and sex-dependent uniformity across populations of the psychotic continuum reflects ontogeny of the cerebral torque. This sapiens-specific evolutionary innovation identified four compartments of association cortex as the language circuit: perceived speech > meaning > thought > speech production. Symptoms (due to directional asynchronies of callosal myelination) represent “leakages” – negative anterior, positive posterior, linguistic to left, affective to right. The speciation event occurred 160 KYA in the Y copy (PCDHY) of the ProtocadherinXY homologous gene pair with subsequent sequence change in PVCXM. Thus, language, H. sapiens & predisposition to psychosis resulted from a single chance event in a male, selected by females.
Data supplement

Fig. DS1 5HTTLPR genotype and diagnosis effects on total thalamic volume.

Total thalamic volume excluding the lateral geniculate nucleus corrected for shrinkage in the z-axis is illustrated in 54 people, with individuals that have died by suicide indicated in red. Means (s.e.m.) for the SERT-l and SERT-ss carriers and for the diagnostic categories are indicated. ANCOVA’s with post-hoc comparisons indicates independent main effects of SERT-ss genotype ($P < 0.03$) and major depressive disorder v. controls ($P < 0.05$) on total thalamic volume. (Table 2 shows complete ANCOVA results). sl/ll, heterozygous or homozygous for SERT-l allele; ss, homozygous for SERT-s allele; BD, bipolar disorder; MDD, major depressive disorder; SKZ, schizophrenia; NC, normal control. *$P < 0.03$, **$P < 0.05$.
Major depression, 5HTTLPR genotype, suicide and antidepressant influences on thalamic volume
Keith A. Young, Willy L. Bonkale, Leigh A. Holcomb, Paul B. Hicks and Dwight C. German
Access the most recent version at DOI: 10.1192/bjp.bp.107.039180

Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2008/04/01/192.4.285.DC1

This article cites 25 articles, 3 of which you can access for free at:
http://bjp.rcpsych.org/content/192/4/285#BIBL

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;192/4/285

http://bjp.rcpsych.org/ on June 25, 2017
Published by The Royal College of Psychiatrists