One-carbon metabolism and depression

Kim et al concluded that lower levels of folate and vitamin B₁₂, and raised homocysteine may be risk factors for late-life depression.¹ We propose to include polyunsaturated fatty acids (PUFAs) in future studies that will test the potential role of one-carbon metabolism in the aetiology and persistence of depression, for several reasons. First, because one-carbon metabolism is intimately linked with PUFA metabolism.² The methionine–homocysteine cycle produces methyl groups for the synthesis of phosphatidylethanolamine from phosphatidylethanolamine catalysed by phosphatidylethanolamine methyltransferase. Phosphatidylethanolamine is critical for the delivery of important PUFAs such as docosahexaenoic acid (DHA; C₂₂:₆n-₃) from the liver to the plasma and distribution to peripheral tissues. The phosphatidylethanolamine/phosphatidylethanolamine ratio also modulates the activity of Delta-5 and Delta-6 desaturases involved in n-3 and n-6 PUFA synthesis. Moreover, plasma homocysteine was significantly inversely correlated with DHA, total n-3 PUFAs and the n-3/n-6 PUFA ratio in healthy males.³ Second, these findings are relevant for psychiatry, as PUFAs – particularly DHA and arachidonic acid – are key ‘building stones’ that are required for healthy functioning of nerve and brain cells. In patients with recurrent depression, a decrease in n-3 PUFAs in erythrocyte membranes was found together with a significant positive association between the sum of plasma n-6 PUFAs and homocysteine.⁴ There is also increasing evidence from cross-sectional studies and randomised controlled trials supporting the notion that an impaired one-carbon metabolism is directly linked to the onset of depression.⁵,⁶ Third, both an impaired one-carbon and an impaired PUFA metabolism might explain the positive associations between depression and metabolic syndrome (a cluster of risk factors for cardiovascular disease). Patients with depression are at risk for all components of metabolic syndrome. Interestingly, metabolic syndrome is associated with a rise in plasma homocysteine levels and a decrease in DHA in plasma and cell membranes. Based on these findings, our opinion is that for a proper understanding of underlying mechanisms linking one-carbon metabolism and depression, homocysteine, folate and B-vitamins should be measured in conjunction with dietary and laboratory analyses of PUFAs.

Authors’ reply.¹ As Assies & Pouwer appropriately point out, there has been growing evidence for an underlying metabolic link between the key components of one-carbon metabolism and PUFAs both in depression and dementia.¹ However, we do not fully agree with their recommendation for measuring these factors in combination. Our reasons are as follows. One of the main potential mood stabilising effects of PUFAs in depression is thought to be their dampening action against abnormal intracellular signal transduction by (a) inhibiting G-protein-mediated and phospholipase-C-mediated hydrolysis of crucial membrane phospholipids; (b) modulating the influx of calcium ions; and (c) reducing the activity of protein kinase C.⁷ In addition, PUFA actions are closely related to inflammatory and immune pathways, which are also potentially important in the pathogenesis of depression.⁸ Compared with these more established findings, the evidence for relationships between one-carbon metabolism and PUFAs in depression is relatively scant. For these reasons, we cannot recommend measuring PUFAs in the context of one-carbon metabolism at the present time, particularly for clinical purposes. However, we do feel that Assies & Pouwer’s suggestions should encourage future animal and clinical studies on these interesting research issues.

References

Risk of harm after psychological intervention

In their trial of cognitive-behavioural therapy (CBT) and family intervention for relapse prevention in psychosis,¹ Garety et al state: ‘There were no differences between the groups, in either [the no-carer or carer] pathway, in the primary outcomes of...’
patterns of remission and relapse. However, data in their Table 1 indicates that more patients who received CBT relapsed than those who received treatment as usual (TAU) (CBT 60/122, TAU 41/119 for all the patients randomised to CBT or TAU). A statistical analysis (logistic model) for the proportion of relapses reveals a significant reduced relapse frequency for TAU.

The differences remain significant (P=0.0153) when only patients in the no-carer pathway are considered (CBT 53/97, TAU 34/92), but there are no differences for those in the carer pathway (CBT 7/25, TAU 7/27), although here the numbers are small.

It is possible that differences in gender and age distribution between the CBT and TAU arms of the trial, or even differences between centres, could have led to different results in the statistical analyses performed by the authors. However, randomisation should have minimised such differences and the authors make no mention of them in the paper.

Hence, on the basis of the results reported, CBT appears to have a detrimental effect on relapse in non-affective psychosis.

The paper by Garety et al1 was an extremely important and methodologically robust examination of the impact of psycho-social interventions for schizophrenia. The editorial by Scott2 in the same issue suggested that there has been an overpromise of social interventions for schizophrenia. The editorial by Scott in relapse rates. This was indeed the statistical evaluation in the semi-rately as the no-carer pathway shows a trend for an increase in

documentation. It would have been important to analysis the pathways separately. In the carer pathways they were 21.4% and 25.9% for TAU, 27.3% and 28% for CBT, 22.2% and 20.8% for family intervention.

The hypothesis used to calculate power was based on the primary outcome of relapse from a non-affective psychosis (ICD–10 category F20–29, and not F2 as reported in the paper), using TAU, CBT for psychosis and family intervention as comparison interventions. It is therefore important to focus on this outcome and it is surprising that this was not analysed in greater detail.

The published relapse rates after full remission and from full/partial remission in the no-carer pathway were 35.4% and 37% respectively for TAU and 46.8% and 54.6% respectively for CBT; in the carer pathways they were 21.4% and 25.9% for TAU, 27.3% and 28% for CBT, 22.2% and 20.8% for family intervention. It would have been important to analysis the pathways separately as the no-carer pathway shows a trend for an increase in relapse rates. This was indeed the statistical evaluation in the semi-nal personal therapy/family therapy 3-year study by Hogarty et al4 where offering therapeutic intervention in a no-carer pathway led to significantly increased rates of psychotic relapse. The discussion in the published paper was thus incorrect in the assertion that the effect of having a carer during psychological intervention had not been reported before.

The second table of results showed the mean number of relapses in the no-carer pathway: 0.79 for TAU and 1.17 for CBT; for the carer pathway this was 0.31 for TAU, 0.63 for CBT and 0.96 for family intervention. The relapse rates point towards an increase in hypothesised outcome and the risk of harm or hazard3 needs to have been discussed in greater detail, to give balance to what has already been acknowledged to be an oversold intervention.

P. J. McKenna. Benito Meri Complex Asistencial en Salud Mental, Barcelona, and Cibenam, Spain. Email: mckennapeter1@gmail.com K. R. Laws, School of Psychology, University of Hertfordshire, UK.

doil: 10.1192/bjp.193.4.344b

Authors’ reply. Marlowe notes that the primary outcome of our trial was relapse and comments that it is surprising, therefore, that it was not analysed in more detail. McKenna et al attempt to analyse the relapse data further. Neither Marlowe nor McKenna et al appear to understand the inferential problems raised by the lack of full or partial remission in a considerable proportion of the patients in this trial. The number with full or partial remission is itself an outcome of the trial (i.e. it is a post-randomisation measure). Those who have shown no recovery are excluded from the relapse data that Marlowe and McKenna et al present. In fact, twice as many people show no recovery in TAU as in CBT (18:9). The data reported by Marlowe and McKenna et al are therefore not a causal effect of randomisation (i.e. not an intention-to-treat effect). Because of this problem, we used months in full or partial remission as our primary indicator of outcome for which a formal intention-to-treat analysis was presented. This analysis and also a further examination of total days in hospital and number of admissions very clearly demonstrate that CBT, family intervention and TAU do not differ. We also reported fully on deaths and other adverse events and found no differences (the only completed suicide was in TAU). We are therefore not at all convinced by the suggestion that psychological intervention might be detrimental. Indeed, we infer on the basis of the results of this trial and of numerous meta-analyses (e.g. Pfammatter et al1 Pilling et al2 and Wykes et al3) that CBT and family intervention are beneficial for certain populations for a range of outcomes.

With respect to the point raised by Marlowe on the effects of having a carer on a psychological intervention, we are of course very aware of the Hogarty et al study,4,5 which we also discuss. It reported mixed findings. Our point here concerned the apparently beneficial effect of having a carer on CBT, which has not been examined before.

Community treatment orders are not a good thing. *British Journal of Psychiatry*, 193, 96–100. Page 98, col. 2: Mary O’Hagan’s name was misspelt. The relevant sentence should read: In the words of Mary O’Hagan, who initiated the service user movement in New Zealand and was the first chair of the World Network of Users and Survivors in Psychiatry, ‘community treatment orders are oppressive and corrupting – it’s tragic that other countries are following Australia and New Zealand’s example’ (M. O’Hagan, personal communication, 2007).

Computerised cognitive-behavioural therapy for depression: systematic review. *British Journal of Psychiatry*, 193, 181–184. The first sentence of the Acknowledgements (p. 183) should read: This project was funded by the NIHR Health Technology Assessment Programme (project ref. 04/01/01) and commissioned on behalf of NICE. It has been published in full in Health Technology Assessment, Vol. 10, No. 33.

doi: 10.1192/bjp.193.4.346

Corrections

Efficacy of antidepressants in juvenile depression: meta-analysis. *BIP*, 193, 10–17. Page 12, Fig. 2: some minor errors (not affecting the data reported) occurred in the published version of this figure. The correct version appears below:

Fig. 2 Forest plot of rate ratios (RR, with 95% CI, on the logarithmic scale) of responses to drug or placebo in 30 randomised double-blind placebo-controlled comparisons of rates of response to antidepressants v. placebo, with overall pooled RR (1.22; 95% CI 1.15–1.31; blue diamond), based on meta-analysis.

Squares represent trials of serotonin reuptake inhibitors (SSRIs; 12 trials); circles represent tricyclic antidepressants (TCAs; 14 trials) and other types of antidepressants (4 trials); the size of the data point is proportional to weight defined by study participant number and measurement variance.
One-carbon metabolism and depression
Johanna Assies and François Pouwer
Access the most recent version at DOI: 10.1192/bjp.193.4.344

References
This article cites 6 articles, 1 of which you can access for free at:
http://bjp.rcpsych.org/content/193/4/344.1#BIBL

Reprints/
permissions
To obtain reprints or permission to reproduce material from this paper, please
write to permissions@rcpsych.ac.uk

You can respond
to this article at
/letters/submit/bjprcpsych;193/4/344

Downloaded from
http://bjp.rcpsych.org/ on June 26, 2017
Published by The Royal College of Psychiatrists