Imaginal desensitisation plus motivational interviewing for pathological gambling: randomised controlled trial

Jon E. Grant, Christopher B. Donahue, Brian L. Odlaug, Suck Won Kim, Michael J. Miller and Nancy M. Petry

Summary
Sixty-eight individuals were randomised to either six sessions of imaginal desensitisation plus motivational interviewing (IDMI) or Gamblers Anonymous. Individuals assigned to IDMI had significantly greater reductions in Yale–Brown Obsessive Compulsive Scale Modified for Pathological Gambling total scores, gambling urges and gambling behaviour. People who failed to respond to Gamblers Anonymous reported significantly greater reduction in pathological gambling symptoms following later assignment to IDMI. Abstinence was achieved by 63.6% during the acute IDMI treatment period.

Declaration of interest
J.E.G. has received research grants from Forest Pharmaceuticals, GlaxoSmithKline and Somaxon Pharmaceuticals he has been a consultant to Somaxon Pharmaceuticals and for law offices as an expert in pathological gambling.

Method
Men and women aged 18 to 75 with pathological gambling and who had gambled at least once per week for the past 2 months were included. Exclusion criteria included: past 3-month substance use disorder; positive urine drug screen at screening; current psychotherapy or medication for pathological gambling; previous GA attendance; suicidal intentions; and current use of psychotropic medications. The University of Minnesota’s institutional review board approved the study and informed consent. After complete description of the study, participants provided written informed consent. This study is registered at www.clinicaltrials.gov: NCT00337753.

Manualised IDMI consisted of six sessions, each lasting 1 h, over an 8-week period. Session one consisted of psychoeducation and motivational enhancement. Session two focused on functional analysis and behavioural strategies. Session three focused on coping with gambling urges and changing irrational thinking. Session four introduced imaginal desensitisation by creating and audiotaping three gambling scenarios that stimulated gambling urges. Relaxation training and cognitive skills were used to cope with the urges that the scenarios elicited. Participants were instructed to listen to the tape three times each day (reported mean 2.2 times (s.d. = 0.8)). Session five included relapse prevention and assertiveness training. Session six included significant other involvement, education and therapy.

Participants in the GA group received a list of meeting times and locations for 75 GA meetings throughout the Twin Cities metropolitan area.

Individuals in the IDMI group began therapy 1 week after baseline assessment and were seen weekly for 6 sessions. One week after the final session, they returned for evaluation. Individuals assigned to GA returned after 8 weeks for follow-up. People in this group

Results
Sixty-eight participants (43 (63.2%) females, mean age 48.7 years (s.d. = 12.8)) were randomised to IDMI (n = 33) or GA (n = 35) (online Fig. DS1). No statistically significant imbalances existed regarding any baseline variable. Individuals spent a mean of 12.5 hours (s.d. = 4.2) each week gambling and had lost 49.7% of their gross income to gambling during the past year. Twenty-five (75.8%) in the IDMI group and 30 (85.7%) in the GA group completed the 8-week treatment.

During the acute 8-week treatment period, significantly better results on the PG–YBOCS were observed for the IDMI group (Table 1). Of the 33 participants in the IDMI group, 21 (63.6%) were abstinent from all gambling for at least 1 month by the end of the 8-week period, whereas only 6 of the 35 (17.1%) in the GA group were abstinent (Fisher’s exact < 0.001). Twenty-six individuals assigned to GA attended at least one meeting (mean weekly attendance 1.1 meetings (s.d. = 2.4)).

Participants in the IDMI group demonstrated a significantly greater response to the other measures of gambling severity (G–SAS, CGI–S), depression and anxiety symptoms and psychosocial functioning (i.e. SDS score) (Table 1). There were no significant gender differences in treatment response.

Those initially assigned to GA showed a statistically greater reduction in gambling symptoms on the PG–YBOCS after receiving IDMI following 8 weeks of GA (F(1,26) = 27.192, P < 0.001). Significant symptom improvement following IDMI
was also observed on the PG–YBOCS urge subscale ($F_{(1,26)} = 22.188$, $P < 0.001$), PG–YBOCS behaviour subscale ($F_{(1,26)} = 22.277$, $P < 0.001$), G–SAS ($F_{(1,26)} = 14.359$, $P = 0.001$), CGI–S ($F_{(1,26)} = 17.199$, $P < 0.001$), SDS ($F_{(1,26)} = 15.529$, $P = 0.001$) and QoLI ($F_{(1,26)} = 10.222$, $P = 0.004$).

Discussion

We found IDMI to be superior to GA referral in acute treatment of pathological gambling across a spectrum of illness-specific and global outcome measures. The results demonstrate that this treatment reduces pathological gambling symptoms and is effective in improving measures of psychosocial functioning and quality of life.

Manualised IDMI was effective in reducing gambling urges as well as behaviour. Unlike conventional treatment, where the individual may not experience urges to gamble during a therapy session, this treatment elicits gambling urges throughout the day and provides, via audiotapes, the immediate cognitive restructuring to control the urges. One theory for its effectiveness is that impairments in prefrontally mediated cognitive functions appear to underlie behavioural dysregulation, namely decision-making and inhibitory control.11 These impairments may increase the risk for making impulsivity-related decisions that focus on short-term gains. Treatment with IDMI allows individuals to experience the urge and immediately increases inhibitory control by focusing on decisions that consider both short- and long-term behavioural consequences.

This study also shows that the most commonly used treatment intervention, GA, was beneficial in only a minority of cases in the short term. Although some long-term benefits from GA have been documented,1,2 the limited short-term benefits seen in this study may explain the high rates of treatment discontinuation.12 However, our exclusion of individuals who had previously attended GA may have resulted in poor GA attendance during the study and worse overall outcomes.

This study has several limitations. First, it is unclear how many IDMI sessions are optimal. It is possible that a longer course of therapy could result in continued and even greater reductions in gambling symptoms. Second, individuals assigned to GA attended meetings very infrequently, so we cannot determine whether GA would be more efficacious if attended more regularly. Finally, although the GA group demonstrated significant benefit from later assignment to IDMI, we cannot rule out a possible impact of earlier GA attendance on later IDMI treatment.

This investigation suggests that IDMI may be effective in the treatment of pathological gambling. As effective treatments for pathological gambling emerge, it becomes increasingly important that physicians and mental healthcare providers screen for pathological gambling in order to provide timely treatment.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>8-week end-point (LOCF)a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDMI group</td>
<td>GA group</td>
</tr>
<tr>
<td></td>
<td>(n = 33, mean (s.d.))</td>
<td>(n = 35, mean (s.d.))</td>
</tr>
<tr>
<td>PG–YBOCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>19.1 (5.45)</td>
<td>19.7 (5.81)</td>
</tr>
<tr>
<td>Urge/thought subscale</td>
<td>9.18 (3.28)</td>
<td>9.40 (3.84)</td>
</tr>
<tr>
<td>Behaviour subscale</td>
<td>9.94 (4.32)</td>
<td>10.3 (4.34)</td>
</tr>
<tr>
<td>G–SAS5 total score</td>
<td>29.3 (7.70)</td>
<td>30.2 (7.99)</td>
</tr>
<tr>
<td>CGI–S – Severity</td>
<td>4.70 (6.68)</td>
<td>4.71 (6.80)</td>
</tr>
<tr>
<td>HRS5</td>
<td>6.36 (5.11)</td>
<td>7.60 (8.71)</td>
</tr>
<tr>
<td>HAS4</td>
<td>4.88 (3.92)</td>
<td>6.20 (3.75)</td>
</tr>
<tr>
<td>Sheehan Disability Scale7</td>
<td>11.94 (7.03)</td>
<td>14.69 (7.92)</td>
</tr>
<tr>
<td>Quality of Life Inventory10</td>
<td>36.6 (13.5)</td>
<td>31.4 (16.1)</td>
</tr>
</tbody>
</table>

LOCF, last observation carried forward (when visit data missing); PG–YBOCS, Yale–Brown Obsessive Compulsive Scale Modified for Pathological Gambling; G–SAS, Gambling Symptom Assessment Scale; CGI–S, Clinical Global impression – Severity scale; HRS, Hamilton Rating Scale for Depression; HAS, Hamilton Anxiety Scale.

a. Imaginal desensitisation plus motivational interviewing and Gamblers Anonymous adjusted for baseline level.

b. ANCOVA F-test for group assignment.

c. Cohen’s effect size based on differences in covariate adjusted mean differences.
Data supplement

![Flow of participants through the study (IDMI, imaginal desensitisation plus motivational interviewing).](image)
Imaginal desensitisation plus motivational interviewing for pathological gambling: randomised controlled trial
Jon E. Grant, Christopher B. Donahue, Brian L. Odlaug, Suck Won Kim, Michael J. Miller and Nancy M. Petry
Access the most recent version at DOI: 10.1192/bjp.bp.108.062414

Supplementary Material
Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2009/09/01/195.3.266.DC1

References
This article cites 8 articles, 2 of which you can access for free at:
http://bjp.rcpsych.org/content/195/3/266#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;195/3/266

Downloaded from http://bjp.rcpsych.org/ on June 27, 2017
Published by The Royal College of Psychiatrists