Recent trends in the incidence of recorded depression in primary care
Greta Rait, Kate Walters, Mark Griffin, Marta Buszewicz, Irene Petersen and Irwin Nazareth

Background
There is a paucity of data describing how general practitioners (GPs) label or record depression.

Aims
To determine incidence and sociodemographic variation in GP-recorded depression diagnoses and depressive symptoms.

Method
Annual incidence rates calculated using data from 298 UK general practices between 1996 and 2006, adjusted for year of diagnosis, gender, age and deprivation.

Results
Incidence of diagnosed depression fell from 22.5 to 14.0 per 1000 person-years at risk (PYAR) from 1996 to 2006. The incidence of depressive symptoms rose threefold from 5.1 to 15.5 per 1000 PYAR. Combined incidence of diagnoses and symptoms remained stable. Diagnosed depression and symptoms were more common in women and in more deprived areas.

Conclusions
Depression recorded by general practitioners has lower incidence rates than depression recorded in epidemiological studies, although there are similar associations with gender and deprivation. General practitioners increasingly use symptoms rather than diagnostic labels to categorise people’s illnesses. Studies using standardised diagnostic instruments may not be easily comparable with clinical practice.

Declaration of interest
None.

Setting
We used data from 298 UK general practices, providing two or more years of data to The Health Improvement Network (THIN) from January 1996 to March 2006. We only used practices meeting standards for acceptable levels of data recording. The total registered patient population during this time period was 4,986,111 people, comprising 21.6 million years of follow-up.

Data source
The Health Improvement Network (THIN) electronic recording scheme is one of the largest UK sources of continuous primary care data on illness recording and prescribing behaviour (http://www.thin-uk.com/). It has been used for epidemiological studies,17,18 including work on antidepressants and suicide.19 Anonymised patient data are pre-collected from participating practices. Practices are broadly representative of UK general practices in terms of patients’ age and gender, practice size and geographical distribution.20 General practitioners enter medical diagnoses and symptoms using Read codes. Read codes are a hierarchical recording system used to record clinical summary information. The codes are not limited to diagnostic and procedural codes, but also include codes for symptoms, test results, screening and other areas. The age, gender, medical diagnosis and symptom records, health promotion activity, secondary care referrals, prescriptions and quintiles of deprivation score are recorded for each registered individual.
Study population
All adults aged 16 years and over registered with practices providing acceptable levels of recording during the study period (1996–2006) were included in the study. All participants had a minimum of 1-year follow-up data.

Measurements
Read code lists were developed by the study team (Online supplements 1 and 2) to identify either recorded diagnoses of depression (e.g. ‘depressive disorder’) or recorded depressive symptoms (e.g. ‘low mood’). A new episode of diagnosed depression was defined as an entry in the records where there was no previous diagnosis of depression coded in the previous year. A new episode of depressive symptoms was also defined as an entry where there had been no previous recorded depressive symptom code in the previous year. Participants could have more than one new episode within the study follow-up period, providing there were 12 months between episodes.

We excluded data from the first 12 months following registration with their GP, as this may be retrospective recording of a past history rather than a true incident recording of a new episode of depression. Age was examined by five age bands (16–24, 25–44, 45–64, 65–74, 75 and above). Deprivation was examined using quintiles of Townsend score from ‘one’ (least deprived) to ‘five’ (most deprived). The Townsend score is a combined measure of owner-occupation, car ownership, overcrowding and unemployment based on a patient's postcode and linkage to population census data for 2001 for approximately 150 households in that postal area.

Statistical analysis
Cases were defined using the Read codes for depression diagnosis and depressive symptoms. Annual incidence rates were calculated by dividing the annual number of incident cases by the total person-years at risk (PYAR) for each year. Single variable analysis was undertaken to examine the association between year of diagnosis (1996 to 2006), gender, age group and quintiles of deprivation score on the one hand and incidence of recorded depression diagnosis or depressive symptoms on the other. Poisson regression was undertaken to investigate the adjusted associations between incidences of recorded depression and depressive symptoms and year of diagnosis, gender, age group and deprivation. The significance of variables in the Poisson regression modelling was assessed using Wald tests. Robust standard errors for the estimated incidence rate ratios (IRR) were utilised to account for clustering within practices. We examined whether there were interactions between age, gender, deprivation and calendar year. Analysis was conducted using Stata version 10 for Windows.

Results
Sample characteristics
There were 2,982,024 registered patients aged 16 years and over from January 1996 to March 2006. The number of recorded episodes of diagnosed depression was 255,667, and of depressive symptoms 156,907. The median follow-up time was 4.9 years (10th centile 1.6, 90th centile 11.8) for all patients, 6.2 years (10th centile 2.1, 90th centile 14.2) for those with a recorded depression diagnosis and 6.3 (10th centile 2.1, 90th centile 13.2) for those with recorded depressive symptoms.

The most frequently used codes for diagnosis were non-specific codes: ‘depressive disorder NEC’ (not elsewhere classified) (n = 90,928 episodes, 35.6%) and ‘depression NOS’ (not otherwise specified) (n = 46,681 episodes, 18.2%). The most common symptom codes were ‘depressed’ (n = 46,671, 29.4%) and ‘complaining of feeling depressed’ (n = 45,203, 28.8%).

Owing to the large sample size (events and PYAR) all associations were found to be statistically highly significant (P < 0.0001). The magnitude of the IRRs and associated 95% confidence intervals (CIs) were therefore of primary interest in interpreting any associations.

Incidence of recorded depression diagnoses
The incidence of recorded diagnoses fell from 22.5/1000 PYAR in 1996 to 14.0/1000 PYAR in 2006 (IRR = 0.64, 95% CI 0.57–0.71; online Table DS1). Females were more than twice as likely to have a diagnosis recorded than males. People in the 25 to 44 age group had the highest rate of diagnosed depression, their incidence being more than 50% higher than those in the 16 to 24 age group. People in the most deprived group had nearly twice the rate of depression diagnosis compared with the least deprived group. The effect of gender and deprivation on incidence of depression did not change substantially with time (online Table DS1).

There was an interaction of age with calendar year, and age with gender. Therefore the IRRs for year, compared with the baseline of 1996, were stratified by both age and gender (Tables 1 and 2). The incidence of recorded depression over time fell more markedly in older (aged 65 years or more) compared with younger age groups. For example, in 1996 the incidence of diagnosed depression in those aged 75 and over was 32% greater than that for 16- to 24-year-olds. By 2006 this was reversed with the incidence in those aged 75 and over being 23% lower. In females the overall incidence of depression in those aged 75 and over was 16% less than in the 16- to 24-year-olds, whereas in males there was a 43% increase.

Incidence of recorded depressive symptoms
The incidence of recorded depressive symptoms rose threefold from the baseline of 5.11/1000 PYAR in 1996 to 15.5/1000 PYAR in 2006 (online Table DS2). Females had symptoms recorded twice as often as males, which is similar to the findings of recorded diagnoses. Adults in the 25 to 44 age group had the highest rate of diagnosed depression, their incidence being 16% less than in the 16- to 24-year-olds, whereas in males there was a 16% increase.

Trends in the incidence of depression in primary care

<table>
<thead>
<tr>
<th>Table 1 Incidence rate ratios (IRR) for diagnosed depression and symptoms of depression stratified by year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosed depression</td>
</tr>
<tr>
<td>Age group</td>
</tr>
<tr>
<td>16–24 Baseline</td>
</tr>
<tr>
<td>25–44 Baseline</td>
</tr>
<tr>
<td>45–64 Baseline</td>
</tr>
<tr>
<td>65–74 Baseline</td>
</tr>
<tr>
<td>75+ Baseline</td>
</tr>
</tbody>
</table>

* a. Adjusted for calendar year, gender, age, deprivation, and for clustering by general practitioner practice using robust standard errors.

Table 1 Incidence rate ratios (IRR) for diagnosed depression and symptoms of depression stratified by year
For recorded depressive symptoms there was an interaction of age with calendar year and age with gender, so the IRRs for year, compared with the baseline of 1996, were stratified by age and gender (Tables 1 and 2). In 1996 the incidence of depressive symptoms in those aged 75 and over was 41% greater than in the 16 to 24-year-olds, whereas in 2006 the incidence was 32% less. There was a lower incidence of recorded depressive symptoms in older age groups (aged 65 years or more) compared with younger age groups in women, but this difference was less marked among men. The effect of gender and deprivation on incidence of symptoms did not change substantially with time.

Combined incidence for diagnoses and symptoms

The results above demonstrate a fall in the recorded incidence of diagnosed depression, but an increase in recorded depressive symptoms, although the combined incidence rates varied little over time (Fig. 1). The combined incidence over the study period was 24.8/1000 PYAR, equivalent to a mean annual incidence of 2.5%. We had categorised depression codes into two lists (diagnoses and symptoms) and included the code ‘depressed’ in the symptoms list. However, this code is commonly used and may be used by GPs as a diagnostic code, so we re-analysed the data with ‘depressed’ as a diagnostic code. This made only a small difference, slightly increasing the incidence of diagnosis, and decreasing the incidence of symptoms, and made no appreciable difference to the IRRs.

Discussion

Key findings

Since 1996 the incidence of recorded diagnoses of depression in UK general practice has fallen, whereas the incidence of recorded depressive symptoms has increased. However, the combined overall incidence has remained remarkably stable. The incidence, for both diagnosis and symptoms, was highest in females and those in the most deprived quintiles of the population. This finding was consistent over time. People in the 25- to 44- and 45- to 64-year-old age groups had the highest incidence of both depression diagnoses and depressive symptoms. Recording of depression in older adults seems to have fallen relative to younger groups.

Most primary care research is based on community samples or on GP attendees, with a predominant focus on prevalence. Our study reports on people who had consulted GPs and been identified as having depression or depressive symptoms, and this information had then been entered in the electronic record. We would therefore expect lower incident rates than those observed in epidemiological case-finding studies of community or GP samples. To our knowledge there are few studies that have reported on this population and the GPs’ entry of diagnosis in the electronic records.

The decrease in recorded depression diagnoses in our study contrasts with the increasing prevalence of the disorder in USA epidemiological studies, although UK community studies indicate that the prevalence of ‘neurotic disorders’ has remained stable despite rising antidepressant prescriptions. Our amalgamated incidence rates of depression diagnoses and symptoms remained stable over the 10-year period, which mirrors similar community prevalence rates recorded in the two waves of the British Survey of Psychiatric Morbidity (1993 and 2000).

Our results could be explained by a change in GPs’ recording behaviour, with a reduced entry of depression as a diagnosis and an increased recording of depressive symptoms during this period, rather than a true decrease in the incidence of depression. The move towards recording symptoms and less specific terms may be perceived as less stigmatising for individuals. General practitioners’ coding may be linked to the perceived severity of depression, with symptom codes being used for milder depression. It may also be explained by greater questioning of the meaning of psychiatric diagnostic categories in primary care and a move away from the use of discrete categories that have dominated psychiatric research and practice. General practitioners may be increasingly unhappy to label people with distress and low mood as having ‘depressive disorder’, and with the increased use of computer coding for consultations have started to enter symptom codes instead. General practitioners have a relationship with their patients that often results in diagnosis being made in a longitudinal manner. General practitioners take into account many psycho-social variables, but are also influenced by their own attitudes and the consulting environment, particularly time issues. Diagnostic validity remains a challenge. There is a continuing debate around whether GPs underdiagnose depression, when compared with psychiatric instruments, or whether they are recognising ‘true’ depression, and not medicalising normal human distress.

The relationships between recorded depression diagnoses and symptoms, and gender and deprivation observed in this study are consistent with epidemiological research. The highest incidence rates in our study were in the 25- to 44-year-old age group for women and in the 44- to 65-year-old age group for men. This
indication of severity from the Read codes used. Most codes entered were non-specific, not allowing for differentiation of subtypes. There is a lack of validation work on depression and depressive symptoms recording in UK primary care databases, and we did not therefore have a gold-standard comparison. There is evidence that non-psychiatric physicians’ recognition of depression has a low sensitivity but high specificity for ‘true’ cases measured using standardised instruments. As computers are used more in practice, GPs are coding more problems, but also using the non-coded free text options more. These comments may allude to recognised depression, but will not get picked up in a search, resulting in an underestimate of the incidence.

Implications

This study suggests that the way that GPs choose to record depression has changed over the past decade. General-practitioner recording of depression diagnoses is lower than that reported in studies on GP attendees using active case-finding. The categorisation by GPs, however, does reflect what is known about depression (being more common in women and in areas of greater deprivation). It reinforces the suggestion that GPs may often choose not to use formal psychiatric criteria to define people’s illnesses. The findings of epidemiological studies, using standardised diagnostic instruments, may not easily be compared with routine clinical practice, as different diagnostic criteria are being applied. This again raises issues regarding the diagnostic validity of depression diagnoses.

Primary care is the place where most people with depression are managed, but the debate over the identification and treatment of depression continues. Epidemiologists and psychiatrists have called for the better identification and treatment of depression in light of its high reported prevalence and associated morbidity. However, the high lifetime prevalence of depression may also suggest that in many cases depression is a normal part of life. This may be reflected in the ways in which GPs record their findings. Currently the evidence that the identification of depression in clinical practice leads to better long-term outcomes is contested.

Clinical data-sets may become a valuable tool in examining depression and its management in primary care. However, further work on the validation of recorded diagnoses is required to allow appropriate exploitation of electronic records. The combined incidence of diagnoses and symptoms remained stable, indicating that GPs may have recorded similar disorders differently over time. Research needs to address why GPs are using symptom codes more than diagnostic codes. Our study pre-dates the introduction of incentive payments for GPs in April 2006 to record depression as part of the National Health Service’s Quality and Outcomes Framework (QoF), which may have further altered coding. Future work should examine the impact of the recommended use of psychiatric screening instruments on identification and classification of depression, as advocated in QoF.
Funding

The Department of Primary Care and Population Health, University College London holds a license to conduct research on the General Practice Research Database (GPRD) by a Special Training Fellowship in Health Services Research from the Medical Research Council (UK). This sponsor had no involvement in the study design, data collection, analyses, interpretation or decision to submit for publication.

Acknowledgement

We would like to thank Amir Islam, data manager, who extracted the data.

References

Table DS1 Incidence rate ratios (IRR) for diagnosed depression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Events, n</th>
<th>PYAR</th>
<th>Incidence (95% CI)</th>
<th>Univariable<sup>a</sup></th>
<th>Multivariable<sup>ab</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IRR (95% CI) P<sup>c</sup></td>
<td>IRR (95% CI) P<sup>c</sup></td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>13,667</td>
<td>606,787</td>
<td>22.5 (22.1–22.9)</td>
<td>Baseline <0.0001</td>
<td>Baseline <0.0001</td>
</tr>
<tr>
<td>1997</td>
<td>16,391</td>
<td>748,034</td>
<td>21.9 (21.6–22.3)</td>
<td>0.97 (0.92–1.02)</td>
<td>0.98 (0.93–1.03)</td>
</tr>
<tr>
<td>1998</td>
<td>18,508</td>
<td>924,642</td>
<td>20.0 (19.7–20.3)</td>
<td>0.89 (0.82–0.96)</td>
<td>0.90 (0.83–0.97)</td>
</tr>
<tr>
<td>1999</td>
<td>21,116</td>
<td>1,153,094</td>
<td>18.3 (18.1–18.6)</td>
<td>0.81 (0.75–0.89)</td>
<td>0.82 (0.75–0.90)</td>
</tr>
<tr>
<td>2000</td>
<td>26,092</td>
<td>1,444,409</td>
<td>18.1 (17.8–18.3)</td>
<td>0.80 (0.73–0.88)</td>
<td>0.82 (0.75–0.90)</td>
</tr>
<tr>
<td>2001</td>
<td>30,203</td>
<td>1,631,831</td>
<td>18.5 (18.3–18.7)</td>
<td>0.82 (0.75–0.90)</td>
<td>0.84 (0.76–0.92)</td>
</tr>
<tr>
<td>2002</td>
<td>33,310</td>
<td>1,845,852</td>
<td>18.0 (17.9–18.2)</td>
<td>0.80 (0.73–0.88)</td>
<td>0.81 (0.74–0.89)</td>
</tr>
<tr>
<td>2003</td>
<td>33,691</td>
<td>1,998,423</td>
<td>16.9 (16.7–17.0)</td>
<td>0.75 (0.68–0.83)</td>
<td>0.76 (0.69–0.84)</td>
</tr>
<tr>
<td>2004</td>
<td>30,694</td>
<td>2,076,653</td>
<td>14.8 (14.6–14.9)</td>
<td>0.66 (0.60–0.72)</td>
<td>0.67 (0.60–0.73)</td>
</tr>
<tr>
<td>2005</td>
<td>27,598</td>
<td>2,059,938</td>
<td>13.4 (13.2–13.6)</td>
<td>0.59 (0.54–0.66)</td>
<td>0.61 (0.55–0.67)</td>
</tr>
<tr>
<td>2006</td>
<td>4,397</td>
<td>313,617</td>
<td>14.0 (13.6–14.4)</td>
<td>0.62 (0.56–0.69)</td>
<td>0.64 (0.57–0.71)</td>
</tr>
<tr>
<td>Total</td>
<td>255,667</td>
<td>14,803,280</td>
<td>17.3 (17.2–17.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>77,963</td>
<td>7,167,342</td>
<td>10.9 (10.8–11.0)</td>
<td>Baseline <0.0001</td>
<td>Baseline <0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>177,704</td>
<td>7,635,937</td>
<td>23.3 (23.2–23.4)</td>
<td>2.14 (2.09–2.19)</td>
<td>2.21 (2.16–2.25)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16–24</td>
<td>25,447</td>
<td>1,904,831</td>
<td>13.4 (13.2–13.5)</td>
<td>Baseline <0.0001</td>
<td>Baseline <0.0001</td>
</tr>
<tr>
<td>25–44</td>
<td>111,500</td>
<td>5,459,223</td>
<td>20.4 (20.3–20.5)</td>
<td>1.53 (1.47–1.59)</td>
<td>1.57 (1.50–1.64)</td>
</tr>
<tr>
<td>45–64</td>
<td>78,006</td>
<td>4,324,320</td>
<td>18.0 (17.9–18.2)</td>
<td>1.35 (1.29–1.42)</td>
<td>1.40 (1.32–1.47)</td>
</tr>
<tr>
<td>65–74</td>
<td>19,084</td>
<td>1,564,895</td>
<td>12.2 (12.0–12.4)</td>
<td>0.91 (0.86–0.97)</td>
<td>0.90 (0.85–0.96)</td>
</tr>
<tr>
<td>75+</td>
<td>21,630</td>
<td>1,550,010</td>
<td>14.0 (13.8–14.1)</td>
<td>1.04 (1.07–1.12)</td>
<td>0.96 (0.90–1.03)</td>
</tr>
<tr>
<td>Deprivation<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>19,009</td>
<td>1,627,408</td>
<td>11.7 (11.5–11.8)</td>
<td>Excluded <0.0001</td>
<td>Excluded <0.0001</td>
</tr>
<tr>
<td>Q1</td>
<td>48,041</td>
<td>3,442,073</td>
<td>14.0 (13.8–14.1)</td>
<td>Baseline Baseline</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>45,036</td>
<td>2,958,244</td>
<td>15.2 (15.1–15.4)</td>
<td>1.09 (1.03–1.15)</td>
<td>1.10 (1.04–1.16)</td>
</tr>
<tr>
<td>Q3</td>
<td>49,534</td>
<td>2,757,405</td>
<td>18.0 (17.8–18.1)</td>
<td>1.29 (1.20–1.38)</td>
<td>1.30 (1.22–1.39)</td>
</tr>
<tr>
<td>Q4</td>
<td>50,979</td>
<td>2,365,079</td>
<td>21.6 (21.4–21.7)</td>
<td>1.54 (1.42–1.67)</td>
<td>1.57 (1.45–1.70)</td>
</tr>
<tr>
<td>Q5</td>
<td>43,068</td>
<td>1,653,037</td>
<td>26.1 (25.8–26.3)</td>
<td>1.87 (1.68–2.08)</td>
<td>1.91 (1.72–2.12)</td>
</tr>
</tbody>
</table>

PYAR, person-years at risk.

^a Standard errors adjusted for practice.

^b Mutually adjusted for calendar year, gender, age and deprivation.

^c P based on Wald test.

^d Deprivation: Q1, least deprived; Q5 most deprived.
Table DS2 Incidence rate ratios (IRR) for symptoms of depression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Events, n</th>
<th>PYAR</th>
<th>Incidence (95% CI)</th>
<th>Univariable<sup>a</sup></th>
<th>Multivariable<sup>ab</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PYAR</td>
<td></td>
<td>Univariable<sup>a</sup></td>
<td>Multivariable<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td>IRR (95% CI)</td>
<td>IRR (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P<sup>c</sup></td>
<td>P<sup>c</sup></td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>3 170</td>
<td>620 21</td>
<td>5.11 (4.93–5.28)</td>
<td>Baseline</td>
<td><0.0001</td>
</tr>
<tr>
<td>1997</td>
<td>4 955</td>
<td>762 49</td>
<td>6.50 (6.32–6.68)</td>
<td>1.27 (1.08–1.49)</td>
<td>Baseline</td>
</tr>
<tr>
<td>1998</td>
<td>6 860</td>
<td>940 19</td>
<td>7.30 (7.12–7.47)</td>
<td>1.43 (1.16–1.46)</td>
<td>Baseline</td>
</tr>
<tr>
<td>1999</td>
<td>9 052</td>
<td>1 168 43</td>
<td>7.75 (7.59–7.91)</td>
<td>1.52 (1.24–1.86)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2000</td>
<td>12 745</td>
<td>1 461 36</td>
<td>8.72 (8.57–8.87)</td>
<td>1.71 (1.39–2.09)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2001</td>
<td>15 012</td>
<td>1 650 60</td>
<td>9.09 (8.95–9.24)</td>
<td>1.78 (1.45–2.19)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2002</td>
<td>19 760</td>
<td>1 866 45</td>
<td>10.6 (10.4–10.7)</td>
<td>2.07 (1.69–2.54)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2003</td>
<td>24 433</td>
<td>2 016 10</td>
<td>12.1 (12.0–12.3)</td>
<td>2.37 (1.94–2.91)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2004</td>
<td>27 653</td>
<td>2 088 64</td>
<td>13.2 (13.1–13.4)</td>
<td>2.59 (2.12–3.17)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2005</td>
<td>28 392</td>
<td>2 065 73</td>
<td>13.7 (13.6–13.9)</td>
<td>2.69 (2.20–3.29)</td>
<td>Baseline</td>
</tr>
<tr>
<td>2006</td>
<td>4 875</td>
<td>314 13</td>
<td>15.5 (15.1–16.0)</td>
<td>3.04 (2.48–3.72)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Total</td>
<td>156 907</td>
<td>14 955 091</td>
<td>10.5 (10.4–10.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>46 553</td>
<td>7 213 36</td>
<td>6.45 (6.39–6.51)</td>
<td>Baseline</td>
<td><0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>110 354</td>
<td>7 741 73</td>
<td>14.3 (14.2–14.3)</td>
<td>2.21 (2.16–2.26)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16–24</td>
<td>17 920</td>
<td>1 914 92</td>
<td>9.36 (9.22–9.50)</td>
<td>Baseline</td>
<td><0.0001</td>
</tr>
<tr>
<td>25–44</td>
<td>66 139</td>
<td>5 527 51</td>
<td>12.0 (11.9–12.1)</td>
<td>1.28 (1.23–1.32)</td>
<td>Baseline</td>
</tr>
<tr>
<td>45–64</td>
<td>46 085</td>
<td>4 376 60</td>
<td>10.5 (10.4–10.6)</td>
<td>1.13 (1.07–1.18)</td>
<td>Baseline</td>
</tr>
<tr>
<td>65–74</td>
<td>11 990</td>
<td>1 575 93</td>
<td>7.61 (7.47–7.74)</td>
<td>0.81 (0.77–0.86)</td>
<td>Baseline</td>
</tr>
<tr>
<td>75+</td>
<td>14 773</td>
<td>1 560 10</td>
<td>9.47 (9.32–9.62)</td>
<td>1.01 (0.94–1.09)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Deprivation<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>8 953</td>
<td>1 641 50</td>
<td>5.45 (5.34–5.56)</td>
<td>Excluded</td>
<td><0.0001</td>
</tr>
<tr>
<td>Q1</td>
<td>29 722</td>
<td>3 670 17</td>
<td>8.57 (8.47–8.66)</td>
<td>Baseline</td>
<td>Excluded</td>
</tr>
<tr>
<td>Q2</td>
<td>27 790</td>
<td>2 984 89</td>
<td>9.31 (9.20–9.42)</td>
<td>1.09 (1.02–1.16)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Q3</td>
<td>30 647</td>
<td>2 786 15</td>
<td>11.0 (10.9–11.1)</td>
<td>1.28 (1.20–1.38)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Q4</td>
<td>32 649</td>
<td>2 393 69</td>
<td>13.6 (13.5–13.8)</td>
<td>1.59 (1.45–1.74)</td>
<td>Baseline</td>
</tr>
<tr>
<td>Q5</td>
<td>27 146</td>
<td>1 678 66</td>
<td>16.2 (16.0–16.4)</td>
<td>1.89 (1.68–2.13)</td>
<td>Baseline</td>
</tr>
</tbody>
</table>

PYAR, person-years at risk.
^a Standard errors adjusted for practice.
^b Mutually adjusted for calendar year, gender, age and deprivation.
^c P based on Wald test.
^d Deprivation: Q1, least deprived; Q5, most deprived.
Online supplement 1: Read codes for depression diagnoses

- [X] Monopolar depression NOS
- [X] Single episode of masked depression NOS
- [X] Mild depression
- [X] Single episode vital depression w/out psychotic symptoms
- [X] Other depressive episodes
- Brief depressive reaction NOS
- [X] Single episode agitated depression w/out psychotic symptoms
- [X] Single episode major depression w/out psychotic symptoms
- [X] Atypical depression
- [X] Endogenous depression without psychotic symptoms
- [D] Postoperative depression
- [X] Severe depressive episode without psychotic symptoms
- Atypical depressive disorder
- Single major depressive episode, partial or unspec remission
- Single major depressive episode, severe, without psychosis
- [X] Depressive neurosis
- Single major depressive episode, unspecified
- Neurotic depression
- [X] Moderate depressive episode
- [X] Single episode of depressive reaction
- [X] Mild depressive episode
- [X] Single episode of reactive depression
- Single major depressive episode, moderate
- Single major depressive episode NOS
- Brief depressive reaction
- Masked depression
- Single major depressive episode, mild
- Endogenous depression first episode
- [X] Depressive disorder NOS
- Single major depressive episode
- [X] Depressive episode, unspecified
- [X] Depressive episode
- [X] Reactive depression NOS
- Endogenous depression
- [X] Depression NOS
- Neurotic depression reactive type
- Depressive disorder NEC
- Vital depression, recurrent without psychotic symptoms
- [X] Other recurrent depressive disorders
- [X] Recurrent depressive disorder, unspecified
- [X] Recurrent depression current episode severe without psychosis
- [X] Major depression, recurrent without psychotic symptoms
- [X] Recurrent brief depressive episodes
- Recurrent major depressive episode NOS
- [X] Recurrent depressive disorder, current episode mild
- [X] Recurrent depressive disorder, current episode moderate
- Recurrent major depressive episodes, unspecified
- [X] Recurrent episodes of psychogenic depression
- [X] Recurrent episodes of depressive reaction
- Recurrent major depressive episodes, severe, no psychosis
- Recurrent major depressive episodes partial/unspec remission
- Recurrent major depressive episodes, mild
- [X] Recurrent depressive disorder
- [X] Recurrent episodes of reactive depression
- Recurrent major depressive episodes, moderate
- Recurrent major depressive episode
- Recurrent depression
- Endogenous depression - recurrent
- [X] Seasonal depressive disorder
- Seasonal affective disorder
- [X] SAD - Seasonal affective disorder
- Postviral depression
- [X] Other persistent mood affective disorders
- [X] Persistent mood affective disorder, unspecified
- [X] Persistent mood affective disorders
- [X] Prolonged single episode of reactive depression
- [X] Dysthymia
- Prolonged depressive reaction
- [X] Persistent anxiety depression
- Chronic depression
- Agitated depression
- Agitated depression
- [X] Postpartum depression NOS
- [X] Postnatal depression NOS
- Puerperal depression
- Postnatal depression

NOS, not otherwise specified.

Online supplement 2: Read codes for depression symptoms

<table>
<thead>
<tr>
<th>Depressed mood</th>
<th>Loss of capacity for enjoyment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depressive symptoms</td>
<td>Low mood</td>
</tr>
<tr>
<td>Symptoms of depression</td>
<td>Complaining of feeling depressed</td>
</tr>
<tr>
<td>Loss of hope for the future</td>
<td>Depressed</td>
</tr>
</tbody>
</table>
Recent trends in the incidence of recorded depression in primary care
Greta Rait, Kate Walters, Mark Griffin, Marta Buszewicz, Irene Petersen and Irwin Nazareth
Access the most recent version at DOI: 10.1192/bjp.bp.108.058636

Supplementary Material
Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2009/12/01/195.6.520.DC1

References
This article cites 33 articles, 10 of which you can access for free at:
http://bjp.rcpsych.org/content/195/6/520#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjpcpsych;195/6/520

Downloaded from
http://bjp.rcpsych.org/ on October 21, 2017
Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/