Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: meta-analysis

Nicolas A. Crossley, Miguel Constante, Philip McGuire and Paddy Power

Over the past decade, atypical (or second-generation) antipsychotics have been increasingly used in the treatment of schizophrenia in preference to ‘conventional’ typical (first-generation) drugs. However, meta-analyses of clinical trials in participants with chronic schizophrenia have suggested a limited advantage of the newer agents in terms of efficacy and two recent large trials failed to find a difference between these two classes of antipsychotics. Furthermore, economic analyses have raised doubts about the cost-effectiveness of the newer drugs. Cost is an important factor for low- and middle-income countries, particularly if, as suggested by a previous meta-analysis, the cost of treatment could partly explain the inverse association between longer duration of untreated psychosis and per capita income. In this context, it has been suggested that typical antipsychotics are as useful as atypicals in the treatment of schizophrenia.

Individuals presenting with a first episode of schizophrenia differ from those in whom the disorder is well established in that a higher proportion show a good symptomatic response. Moreover, the dose of antipsychotics required to achieve symptomatic remission is usually lower than in individuals with chronic schizophrenia, and those with a first episode are more susceptible to extrapyramidal side-effects. Their younger age also puts them at risk of longer exposure to the potential metabolic complications of newer antipsychotics. Avoiding adverse effects when individuals first start treatment is particularly important as it may colour their attitude to medication and psychiatric treatment more generally thereafter. Antipsychotics with a benign side-effect profile thus offer an advantage in this phase of schizophrenia.

The previous recommendation of atypical antipsychotics as a first-line treatment in people presenting with a first episode of psychosis has been questioned. We performed a meta-analysis to look at the efficacy and side-effects of atypical versus typical antipsychotics in the treatment of the early phase of psychosis.

Method

We included randomised controlled trials comparing atypical and typical antipsychotics in individuals in the early phase of psychosis. To be included in the meta-analysis, studies had to use a validated diagnostic system and explicitly define whether their participants were antipsychotic naive, experiencing a first episode of psychosis or were in the early phase of psychosis. We expected to find varying definitions of first episode and early psychosis, and therefore we accepted any definitions used and modelled the effects of the different duration of illness in the analyses. We excluded studies that recruited only participants with an affective psychosis, or individuals younger than 13 or older than 65 years of age. Studies needed to report at least one of the following outcomes: adherence with antipsychotic medication, discontinuation rates (odds ratio (OR) = 0.7, 95% CI 0.4 to 1.2) or effect on symptoms (standardised mean difference (SMD) = –0.1, 95% CI –0.2 to 0.02). Participants on atypical antipsychotics gained 2.1 kg (95% CI 0.1 to 4.1) more weight than those on typicals, whereas those on typicals experienced more extrapyramidal side-effects (SMD = –0.4, 95% CI –0.5 to –0.2).

Conclusions

There was no evidence for differences in efficacy between atypical and typical antipsychotics, but there was a clear difference in the side-effect profile.

Declaration of interest

None.
and then any other validated scale. Two major groups of side-effects were assessed: weight gain and extrapyramidal side-effects, using the last reported observation of each study. When studies reported more than one arm of atypical or typical antipsychotics, effect sizes and variances of the different drugs were pooled together per group using number of participants as a weight factor.

Pertinent randomised controlled trials were identified using an electronic and a hand-based search. A computer-based search was performed using the following databases: MEDLINE (1966 to 20th January 2009), EMBASE (1980 to January Week 3 2009), PsyINFO (1806 to January Week 2 2009) and Cochrane CENTRAL (The Cochrane Library 2008, Issue 4). No language constraints were applied. Subject headings including Psychosis, Schizophrenia, and Atypical Antipsychotic Agent were used as well as text words such as ‘first episode’, ‘never medicated’, ‘naïve’ and names of atypical antipsychotics. Details of the search strategy can be found in the online supplement. Two of the authors (N.A.C. and M.C.) independently reviewed all the identified abstracts from the electronic search, selected the studies included and extracted the data. Any conflicts were discussed with a third reviewer (P.P.). References of the identified studies and published reviews on pharmacological management of first-episode psychosis were also searched.26 One of the authors (N.A.C.) undertook to hand-search data of published abstracts of the 3rd to 5th Conference on Early Psychosis and 8th to 14th Biennial Winter Workshop on Schizophrenia to complement the electronic search. Authors were contacted if data were missing.

As we anticipated different definitions of early psychosis or first-episode psychosis we expected to find significant clinical heterogeneity among the studies and therefore decided that using a random-effects analysis would be appropriate.20 When looking at adherence rates for antipsychotic medication, we preferred to use odds ratios instead of risk ratios in spite of their more difficult interpretation. This allowed us to avoid giving too much weight to trials with high event rates.21 For continuous variables, weighted means or standardised mean differences using Hedges’ g were used. The latter was used when more than one scale was reported in the outcomes. Heterogeneity was explored using χ². I² is another measure of heterogeneity that refers to the proportion of the variance explained by the between-trial variance. Due to the easiness in the interpretation, it is also reported in this study. We used meta-regression to look at potential confounders in our summary measure. Knowing that we would find a limited amount of trials to include in each comparison, we only performed the regression if the variable being controlled for was reported in all the included studies. We used meta-regressions to look at the effects of the dose of typical antipsychotic used and the proportion of antipsychotic-naïve participants included. The European First-Episode Schizophrenia Trial (EUFEST) suggested that masking status might cause a bias in discontinuation rates (e.g. unmasked clinicians might discontinue typical drugs sooner than atypicals if complications arose).22,23 Masking status was therefore also included in the model for discontinuation rates. For the side-effects analysis, we included the assessment point in time. Given the known difference in side-effect profiles for some atypicals, we also included in the regression the proportion of participants taking olanzapine or clozapine when looking at weight gain, and amisulpride or risperidone when looking at extrapyramidal symptoms. In order to avoid spurious results by overfitting the data (e.g. when more than one factor was reported in all the studies), we opted for a repeated univariate meta-regression rather than a multiple regression approach. Results of these meta-regressions should be considered exploratory because of the multiple comparisons performed.

Publication bias was explored using Egger’s test.23 All analyses were done using STATA 10.0 running in Windows XP.

Results

Combined searches of the four databases yielded 1053 references. In total 105 articles were retrieved for further assessment from which 14 different randomised controlled trials were identified. Two further trials were identified in the manual search, one of which could not be included because of a lack of data (the trial looked at ziprasidone versus haloperidol and was published as a conference abstract). As a result, we included 15 randomised controlled trials that recruited a total of 2522 patients. Figure 1 summarises the study selection and exclusion process.

Risperidone was used in nine studies as the atypical antipsychotic,24–32 olanzapine was used in seven trials,13,22,27,28,32–34 and two studies used quetiapine22,25 and clozapine.22,26 Amisulpride and ziprasidone were used in one study.22 Twelve of the fifteen studies used haloperidol as the first-generation antipsychotic. The other three studies used chlorpromazine,26 oral zuclopenthixol25 and sulpiride.27 All but one study22 reported using low doses of typical antipsychotic, below the usually described cut-off point of 12 mg of haloperidol or equivalent.1,4 Eight studies reported using doses lower than haloperidol 5 mg,22,25,29,30,33,34, accounting for more than two-thirds of the total sample of participants treated with typical antipsychotics included in this review. Characteristics of the included trials and selected references are shown in online Table DS1.

Seven studies reported long-term data of discontinuation rates suitable for pooling, with a total of 1823 participants. Studies used different definitions of discontinuation, but most reported that participants were considered as discontinuing the drug due to

Fig. 1 Flowchart of study selection. RCT, randomised controlled study.
side-effects or lack of response among other reasons. Only one study considered discontinuation rates as their primary outcome and explicitly defined how they measured it.22 There was a non-significant greater proportion of individuals prescribed atypical antipsychotics who were adherent around 1 year (Fig. 2, odds ratio (OR) = 0.73, P = 0.22). On visual inspection, results appeared to differ between the different studies and not surprisingly, heterogeneity was significant as assessed with χ² (P < 0.001). There is an outlier finding from a small study that used quetiapine,35 and excluding this study did not change the overall result (OR = 0.64, P = 0.09) and had little effect on the heterogeneity observed. Masking status was reported in all seven studies. A meta-regression including masking status as the independent variable and the odds ratio of each study as the dependent variable was non-significant. In other words, masking status was not a significant moderator of the effect sizes of the studies included.

For the short-term symptomatic outcome, 12 trials were pooled with a total of 1949 participants. Most studies reported PANSS scores, although a few reported BPRS scores. Therefore standardised effect sizes were pooled. A small non-significant trend favouring atypical antipsychotics was found (s.d. = –0.1, P = 0.12) as shown in Fig. 3. Heterogeneity was not statistically significant in the comparison according to χ² (P = 0.17). Since there was no significant heterogeneity found, we repeated the analysis with a fixed-effect approach as some authors have suggested, but the difference remained non-significant (s.d. = –0.08, 95% CI = –0.17 to 0.02). We performed a meta-regression using the dose of atypical as a covariate of the effect size. There was a non-significant trend for comparisons that used higher doses of typical antipsychotics to report larger effect sizes that favoured atypicals (1 mg of haloperidol equivalent accounting for standardised mean difference (SMD) = 0.02 favouring atypicals, P = 0.09).

For weight gain, a total of seven studies were pooled including 1444 participants. Pooling of the seven studies showed that individuals on atypical antipsychotics gained an extra 2.1 kg compared with those on typical antipsychotics (P = 0.04, Fig. 4). Heterogeneity was present according to χ² (P < 0.001). One of the trials27,37 reported body max index (BMI) instead of weight. In order to include this outcome with the rest of the studies, participants’ BMIs were transformed to kilograms assuming that everyone’s height was 1.70 m (an assumption that probably decreased its variance). Excluding this study from the analysis had little effect on the results and only marginally decreased heterogeneity (I² decreased from 80 to 74%). Meta-regressions were performed using the following covariates: amount of time exposed, typical doses, and percentage of participants receiving olanzapine or clozapine. None of these factors reached statistical significance.

For an analysis of extrapyramidal side-effects, nine studies with 1341 participants were pooled. As described previously, most of the studies utilised the high-potency antipsychotic haloperidol and only two used zuclopenthixol and chlorpromazine. Rating scales reported varied, with five studies using the Simpson–Angus Scale (SAS),13,28,30,36,38 three studies the Extrapyramidal Symptom Rating Scale (ESRS),24,26,39 and one the St Hans Rating Scale for Extrapyramidal Syndrome (SHRS).22 There are differences between the rating scales, but all of them include an objective evaluation of parkinsonism. The SHRS and ESRS both rate dystonia and akathisia, and the latter also includes a

Table DS1

<table>
<thead>
<tr>
<th>Study</th>
<th>Odds ratio (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieberman36</td>
<td>0.61 (0.27 to 1.36)</td>
<td>13.2</td>
</tr>
<tr>
<td>HGDH28</td>
<td>0.44 (0.23 to 0.88)</td>
<td>14.9</td>
</tr>
<tr>
<td>EPGN26</td>
<td>1.27 (0.90 to 1.78)</td>
<td>18.1</td>
</tr>
<tr>
<td>Perez-Iglesias56</td>
<td>0.49 (0.25 to 0.96)</td>
<td>14.8</td>
</tr>
<tr>
<td>GRNS30</td>
<td>1.06 (0.53 to 2.10)</td>
<td>14.6</td>
</tr>
<tr>
<td>EUPFEST22</td>
<td>0.36 (0.23 to 0.57)</td>
<td>17.2</td>
</tr>
<tr>
<td>Bustillo29</td>
<td>3.71 (0.82 to 16.84)</td>
<td>7.2</td>
</tr>
<tr>
<td>Overall</td>
<td>0.73 (0.44 to 1.21)</td>
<td>100.0</td>
</tr>
</tbody>
</table>

For clarity purposes, the first author of the first published paper is used in Table DS1 in cases where more than one article reporting outcomes of the study has been included.
questionnaire to assess the subjective experience of extrapyramidal symptoms. In order to make these different scales comparable, only parkinsonism scores were extracted from these two scales when possible, and effect sizes were standardised. This was not possible in one study which reported global ESRS20 and in another one in which we used total ESRS at end-point (24 months) of observed cases provided by one of the authors.26 We repeated this analysis excluding them. It should be noted that the results of this analysis apply to parkinsonism and not necessarily to other extrapyramidal symptoms such as akathisia. We found a significant advantage of atypicals over typicals as shown in Fig. 5 (s.d. = –0.38 favouring atypicals, P = 0.001). Heterogeneity using chi-squared was not statistically significant (P = 0.14), and a fixed-effects analysis left the results substantially unchanged (s.d. = –0.37, 95% CI –0.53 to –0.24). Meta-regression analyses looking at dose of typical antipsychotics, amount of time exposed, and proportion of individuals receiving risperidone or amisulpride did not produce any statistically significant results. Exclusion of the two studies from which global ESRS scores were used did not substantially change the results.

Main findings

We did not find a significant difference between atypical and typical antipsychotics in discontinuation rates. Discontinuation seems an appealing concept reflecting both efficacy of a drug and side-effects, but unfortunately there does not appear to be a consensus defining what exactly discontinuing a drug is: definitions of discontinuation ranged from irregularities in the adherence to a medication regime (e.g., taking lower doses of the assigned antipsychotic than prescribed for a period of 2 weeks as in Kahn et al.34 to total discontinuation of the study drug (as in Schouder et al.26) in the studies included in this meta-analysis. It is possible that a number of factors underpin these variations in what is defined as ‘discontinuation’ and this could be one of the causes of the significant statistical heterogeneity present in that comparison. Since only one study explicitly defined discontinuation in the context of being the primary outcome,26 we were not able to analyse whether variation in the definition of discontinuation had an effect on the pooled outcome.

We found no significant difference between atypical and typical antipsychotics in acute symptomatic effect. Individuals with first-episode psychosis usually show a good symptomatic response to antipsychotic treatment,11 and this may have introduced a ceiling effect that complicated comparisons. However, even if additional studies had been included such that the power of the analysis was increased, the estimated effect size of s.d. = 0.1 (equivalent to two points on the PANSS scale using the variance found in the biggest study included)26 suggests that even if a significant difference could be identified it may not be clinically meaningful. A previously published study found that a one-step change in the Clinical Global Improvement scale (allegedly a more ‘clinically meaningful’ scale) required a 15-point change on the PANSS.40 A meta-analysis of treatment in chronic schizophrenia found an advantage for atypicals only when compared with high doses of typicals.1 In the present study, although the doses of typical antipsychotics prescribed in the studies we analysed were low, there was a similar trend for atypicals to be superior when the comparison involved higher doses of typicals. Although this observation was not significant, it supports the notion that when using typical antipsychotics in individuals with a first episode, lower doses of medication are indicated compared with individuals with chronic schizophrenia.

Although there were no significant differences between atypicals and typicals in discontinuation rates or symptom control, we did find differences in their side-effect profile. In line with previous studies1,14,26 our meta-analysis found that, on average, participants prescribed an atypical antipsychotic would gain 2 kg more than those on typicals, whereas those prescribed a typical antipsychotic would rate 0.4 standard deviations higher in the extrapyramidal scales (e.g. approximately one extra point in the SAS if using the data from one of the studies included).34,36 We did not find a correlation between these findings and the use of specific atypical drugs that have been particularly associated with weight gain or extrapyramidal side-effects. This does not mean we can exclude any differences between the atypicals in their side-effect profiles in first-episode participants as this meta-analysis was not designed to look at within-class differences, and our meta-regression analysis was probably underpowered. As most of the studies we analysed included haloperidol, there is a possibility that the difference in extrapyramidal side-effects between atypicals and low-potency typical antipsychotics is less marked, as is the case in people with chronic schizophrenia.2

Future research

This meta-analysis leaves many questions unanswered. First, it would have been interesting to look at differences in relapse rates between atypicals and typicals. We decided not to pool this outcome as there were too few studies reporting it. From the long-term studies included in this meta-analysis, three reported relapse rates in participants who achieved remission26,30,38 and one reported readmissions to hospital in participants recruited from an in-patient unit.36 Of these four, three reported no significant differences.30,36,38 The other trial,26 which was the largest and longest, reported significantly lower relapse rates with risperidone compared with haloperidol (42.1% v. 54.7% respectively), even though no differences were found in remission and medication adherence. As relapse is an important determinant of long-term outcome, this should be a serious consideration in the choice of antipsychotic. Further large long-term studies would be needed to verify this study’s findings. Second, some of the most important risks with antipsychotics such as diabetes (seen with some atypicals) or tardive dyskinesia (commonly seen with
typicals) usually appear after years of exposure to these medications. This makes it exceedingly unlikely that this will ever be studied using randomised controlled trials. However, these serious long-term outcomes should also be considered when deciding upon maintenance medication. Changes in glucose and lipid levels with antipsychotic medication could be seen as an intermediate outcome in metabolic complications, but the small proportion of studies reporting this outcome from the included studies discouraged us to perform a meta-analysis.

Recent criticisms have been raised about the validity of atypical antipsychotics as a group. \(^2\) This is backed mostly by two recent meta-analyses by Leucht et al, who reported differences within the atypical antipsychotics \(^3\) and also when compared with typical antipsychotics. \(^4\) As already mentioned, our meta-analysis was not designed to look at differences within the atypical antipsychotics. Nevertheless, it should be noted that almost all the drugs included in this meta-analysis were those that were reported as more effective than their comparisons for chronic schizophrenia in the above mentioned studies (namely olanzapine, risperidone, clozapine and amisulpride).

Implications

This meta-analysis revealed no significant differences between typical and atypical antipsychotics in discontinuation rates or in short-term symptomatic response in individuals with first-episode psychosis. However, treatment with atypical antipsychotics was associated with relatively more weight gain, whereas treatment with typicals was associated with a greater incidence of extra-pyramidal side-effects. Choice of antipsychotic drug in the treatment of first-episode psychosis may thus be more influenced by side-effect profile than efficacy.

Nicolas A. Crossley, MRCPsych, MSC, Miguel Constanza, MRCPsych, Division of Psychological Medicine, Institute of Psychiatry, London; Philip McGuire, FRCPsych, PhD, Division of Psychological Medicine, Institute of Psychiatry, and Outreach and Support in South London (DASS), London South and Maudsley NHS Foundation Trust, London; Paddy Power, MRCPsych, FRANZCP, MD, Division of Psychological Medicine, Institute of Psychiatry, and Lambeth Early Onset Services (LEO), South London and Maudsley NHS Foundation Trust, London, UK

Correspondence: Nicolas A. Crossley, Division of Psychological Medicine, Institute of Psychiatry PO Box 67, De Crespigny Park, London SE5 8AF. Email: nicolas.crossley@kcl.ac.uk

First received 17 Mar 2009, final revision 2 Dec 2009, accepted 17 Feb 2010

Funding

N.A.C. is in receipt of an Academic Training Fellowship from the National Institute of Health Research, UK.

Acknowledgements

We are grateful to Dr Han Boler, Dr Warrick Brewer, Dr Juan Bustillo, Professor Robin Emsley, Professor Wolfgang Gaebel, Dr Roy Gilg, Dr Bire Gnanthaj, Professor Rene Kahn, Mr Keith Karcher, Professor Jeffrey Lieberman, Professor Jonathan Rabinowitz and Dr Matthias Riesbeck who provided unpublished data to the authors and clarified all the doubts we had. We would also like to thank Dr Daniel Stahl for statistical advice.

References

3. Davis JM, Chen N, Glick ID. A meta-analysis of the efficacy of second-generation antipsychotics. *Arch Gen Psychiatry* 2003; 60: 553–64.
On therapy

Ramy Daoud

I worked in medicine for many years before I was drawn to psychiatry. My encounters with patients with physical ailments prefigured those encounters I would have as a psychiatrist. The cognition of pain. The search for meaning. The elicitation of a story. The laying of hands on where it hurts. The re-cognition of pain. Sometimes I would cut it out. Sometimes I would cover it up. Sometimes I could do nothing.

In these instances, I am reminded of Mural by the Palestinian poet of exile, Darwish. I find it quite a haunting piece, lingering in the back of my mind before, during, between sessions with patients. A patient knocks at the door of therapy. Therapy: ‘the dialogue of dreamers’ where the patient ‘shuns body and self . . . to finish that first journey towards meaning, which burnt me, and disappeared.’ Disappeared into absence and no space, where ‘nothing hurts at the door of doom’. In no space, and no time, that silent voice says ‘one day I shall become . . .’. And they come, knocking at the door of therapy. Therapy is a space-time, an en-closure Disappeared into absence and no space, where ‘nothing hurts at the door of doom’. In no space, and no time, that insistent voice

Ramy Daoud is specialty registrar in general adult psychiatry, East Cornwall Community Mental Health Team.

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria (diagnosis; definition of early psychosis)</th>
<th>Duration of psychosis in treatment or % antipsychotic naive</th>
<th>Interventions and doses received (means reported if otherwise not stated)</th>
<th>Recruited typical/ atypical, n</th>
<th>Length of study</th>
<th>Quality (concealment of sequence of allocation, masking, loss to follow-up or number dropped out reported)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperidone Working Group (1999)</td>
<td>DSM-III schizophrenia or schizophreniform aged 15-45 years, no previous antipsychotic treatment</td>
<td>No previous antipsychotic treatment (up to 3 days of emergency treatment allowed)</td>
<td>Risperidone 6.1mg/haloperidol 5.6mg</td>
<td>99/84</td>
<td>6 weeks</td>
<td>Unclear if allocation was concealed, described as ‘double-blind’ 25% reported as non-completers</td>
</tr>
<tr>
<td>Sanger (1999)</td>
<td>DSM-III-R schizophrenia, schizophreniform disorder, or schizoaffective disorder, with BPRS > 18 or intolerance of current antipsychotic therapy and aged > 18 years; first episode of psychosis with a duration of less than 5 years and before 45 years of age</td>
<td>Duration of treatment for psychosis of 13 months (mean)</td>
<td>Olanzapine 11.6mg/haloperidol 10.8mg</td>
<td>59/4</td>
<td>6 weeks</td>
<td>Subsample analysis of randomised controlled trial Unclear if allocation was concealed, described as ‘double-blind’ Original study reported 1.3% of sample was lost to follow-up</td>
</tr>
<tr>
<td>Mackeprang (2002-2007)</td>
<td>ICD-10 schizophrenia, antipsychotic-naive patients on their first admission to hospital</td>
<td>All antipsychotic naive</td>
<td>Risperidone 3.6mg/zuclopenthixol 9.6mg</td>
<td>15/10</td>
<td>13 weeks</td>
<td>Unclear if allocation was concealed, ‘open labelled’ LTF 19%</td>
</tr>
<tr>
<td>Lieberman (2003)</td>
<td>DSM-IV schizophrenia or schizophreniform disorder aged 16-40 years and current psychotic symptoms of moderate severity or greater measured by one of the five psychotic items in BPRS, history of psychosis less than 60 months, no prior treatment with antipsychotic medication or a total lifetime usage of < 14 days</td>
<td>All antipsychotic naive (up to 14 days of antipsychotics allowed)</td>
<td>Clozapine plus placebo 400 mg at 12 weeks, then 300mg/chlorpromazine plus benzotropine 600 mg at 12 weeks, then 400 mg (median)</td>
<td>80/80</td>
<td>52 weeks</td>
<td>Described as ‘double-blind’, and authors confirmed that allocation, masking and treatment was concealed 12% of the participants reported to have dropped out</td>
</tr>
<tr>
<td>De Haan (2003)</td>
<td>DSM-IV schizophrenia aged 17-28 years admitted to adolescent clinic specialising in recent-onset schizophrenia</td>
<td>Duration of illness of 16.5 months (mean), but unclear duration of treatment</td>
<td>Olanzapine 7.5mg/haloperidol 2.5mg (fixed doses)</td>
<td>12/12</td>
<td>6 weeks</td>
<td>Unclear if allocation was concealed, described as ‘double-blind’ 17% dropped out</td>
</tr>
<tr>
<td>HGDH Study Group (2002a,b)</td>
<td>DSM-IV schizophrenia, schizophreniform disorder, or schizoaffective disorder aged 16-40 years (onset before 35 years), experienced psychotic symptoms for at least 1 month, scored >4 on at least two PANSS items or scored >5 on one psychosis item, had a CGI severity score > 4 (moderately ill) and required treatment with antipsychotic drugs on a clinical basis; history of psychosis < 60 months</td>
<td>74% receiving antipsychotic for mean time of 5.9 weeks Rest antipsychotic naive</td>
<td>Olanzapine 9.1 mg in acute phase, 10.2 mg in continuation phase/ haloperidol 4.4 mg in acute phase, 4.8 mg in continuation phase</td>
<td>131/132</td>
<td>24 months</td>
<td>Described as ‘double-blind’, and authors confirmed that allocation, masking and treatment was concealed LTF of 6% reported at 24 months</td>
</tr>
<tr>
<td>Early Psychosis Global Network (EPGN) (2003a,b)</td>
<td>DSM-IV schizophrenia, schizophreniform disorder, or schizoaffective disorder aged 16-45 years requiring antipsychotic treatment upon enrolment; history of psychosis for < 1 year, less than 12 weeks of cumulative exposure to antipsychotics and no more than two psychiatric hospitalisations for psychosis</td>
<td>31% antipsychotic naive</td>
<td>Risperidone 3.3mg/haloperidol 2.9mg</td>
<td>278/277</td>
<td>Follow-up continued until last participant enrolled had completed 2 years of treatment</td>
<td>Unclear if allocation was concealed, described as ‘double-blind’ LTF of 7% reported</td>
</tr>
<tr>
<td>Wu (2006)</td>
<td>DSM-IV schizophrenia aged 18-45 years; first episode of psychosis, no previous antipsychotic exposure</td>
<td>All antipsychotic naive</td>
<td>Clozapine 275.6 mg, olanzapine 13.7 mg, risperidone 42.4 mg/sulpiride 733 mg</td>
<td>83/29</td>
<td>8 weeks</td>
<td>Adequate concealment of allocation, unmasked 7% dropped out</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria (diagnosis; definition of early psychosis)</th>
<th>Duration of psychosis in treatment or % antipsychotic naive</th>
<th>Interventions and doses received (means reported if otherwise not stated)</th>
<th>Recruited atypical/ typical, n</th>
<th>Length of study</th>
<th>Quality (concealment of sequence of allocation, masking, loss to follow-up or number dropped out reported)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crespo-Facorro (2006)</td>
<td>DSM–IV schizophreniform, schizophrenia, schizoaffective, brief reactive psychosis, schizotypal personality disorder, psychosis not otherwise specified aged 15–60 years, with SAPS psychotic symptoms moderate severity or greater; antipsychotic naive or total lifetime exposure of less than 6 weeks</td>
<td>All antipsychotic naive or with a total lifetime exposure of <6 weeks</td>
<td>Risperidone 4 mg, olanzapine 13.5 mg and haloperidol 5.4 mg in acute phase, Risperidone 3.6 mg, olanzapine 10.1 mg and haloperidol 2.9 mg at 1 year</td>
<td>116/56</td>
<td>12 months</td>
<td>Unclear if allocation was concealed, unmasked LTF 11%</td>
</tr>
<tr>
<td>Brewer (2007)</td>
<td>First episode of psychosis defined as onset between 16 and 30 years of at least one of the following: (a) delusions; (b) hallucinations; (c) disorder of thinking/speech, other than simple acceleration or retardation; and (d) disorganised, bizarre, or markedly inappropriate behaviour, without previous antipsychotic treatment. Diagnosis of schizophrenia DSM–IV was confirmed at 6 months</td>
<td>All antipsychotic naive</td>
<td>Risperidone 2 mg/haloperidol 2 mg (fixed doses)</td>
<td>3/4</td>
<td>8 weeks</td>
<td>Unclear if allocation was concealed, described as ‘double-blind’ LTF 12.5%</td>
</tr>
<tr>
<td>German Research Network on Schizophrenia (GRNS) (2007)</td>
<td>ICD–10 schizophrenia aged 18–60 years; participants in their first in-patient treatment of psychotic symptoms</td>
<td>57% of the participants had an onset of psychosis less than 6 months before study entry, but unclear duration of treatment</td>
<td>Risperidone 3.8 and 4.2 mg/haloperidol 3.7 mg and 4.1 mg (both in the acute and continuation phase respectively)</td>
<td>146/143</td>
<td>2 years</td>
<td>Described as ‘double-blind’, and authors confirmed that allocation, masking and treatment was concealed 49% reported to have dropped out in the acute phase, 68.2% in continuation trial (including discontinuation of drug)</td>
</tr>
<tr>
<td>Lee (2007)</td>
<td>DSM–IV schizophrenia, antipsychotic naive</td>
<td>Antipsychotic naive</td>
<td>Risperidone 4.1 mg/haloperidol 7.6 mg</td>
<td>10/10</td>
<td>8 weeks</td>
<td>Unclear if allocation was concealed, described as ‘double-blind’</td>
</tr>
<tr>
<td>Saddichha (2008)</td>
<td>DSM–IV schizophrenia; antipsychotic naive</td>
<td>Antipsychotic naive</td>
<td>Risperidone 4.4 mg and olanzapine 16.5 mg/haloperidol 13.4 mg</td>
<td>68/31</td>
<td>6 weeks</td>
<td>Unclear if allocation was concealed, described as ‘double-blind’</td>
</tr>
<tr>
<td>Bustillo (2008)</td>
<td>DSM–IV schizophrenia, schizoaffective or schizophreniform disorder; less than 3 weeks lifetime exposure to antipsychotics.</td>
<td>47% antipsychotic naive</td>
<td>Quetiapine 100–600 mg/haloperidol 2–12 mg (range allowed)</td>
<td>17/15</td>
<td>2 years</td>
<td>Unclear if allocation was concealed, reported to be ‘double-blind’ LTF 28%</td>
</tr>
<tr>
<td>European First-Episode Schizophrenia Trial (EUFEST) (2008)</td>
<td>DSM–IV schizophrenia, schizophreniform disorder, or schizoaffective disorder aged 18–40 years; <2 years of onset of positive symptoms and lifetime exposure of antipsychotics of less than 2 weeks in the last year or 6 weeks at any time</td>
<td>33% antipsychotic naive</td>
<td>Olanzapine 12.6 mg, ziprasidone 107.2 mg, quetiapine 49.8 mg, amisulpride 450.8 mg/haloperidol 3 mg</td>
<td>395/103</td>
<td>12 months</td>
<td>Adequate concealment of allocation sequence, unmasked LTF 31%</td>
</tr>
</tbody>
</table>

LTF, lost to follow-up; BPRS, Brief Psychiatric Rating Scale; PANSS, Positive and Negative Syndrome Scale; CGI, Clinical Global Impression; SAPS, Scale for the Assessment of Positive Symptoms.

a. All references from each selected trial are shown (additional references are cited below). 49–59
Additional references

EASEBASE

(exp DEPRESSIVE PSYCHOSIS/ or exp MANIC DEPRESSIVE PSYCHOSIS/ or exp PARANOID PSYCHOSIS/ or exp SCHIZOAFFECTIVE PSYCHOSIS/ or exp MANIC PSYCHOSIS/ or exp AFFECTIVE PSYCHOSIS/ or exp ENDGENOUS PSYCHOSIS/ or exp ACUTE PSYCHOSIS/ or psychosis.mp. or exp PSYCHOSIS/ or schizophrenia.mp. or exp SIMPLE SCHIZOPHRENIA/ or exp PARANOID SCHIZOPHRENIA/ or exp SCHIZOPHRENIA/ or exp CATATONIC SCHIZOPHRENIA/ or exp RESIDUAL SCHIZOPHRENIA/ or exp LATENT SCHIZOPHRENIA/ or exp SCHIZOPHRENIFORM DISORDER/ or (schizophrenic or schizophrenics.mp. or mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name) AND (("first episode" or naive or "never medicated" or (never adj3 (antipsychotic$ or neuroleptic$))).mp. or mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name) AND (Randomized Controlled Trial/ or random$).mp.)

Details of search

PubMed

PsycINFO

(exp DEPRESSIVE PSYCHOSIS/ or exp MANIC DEPRESSIVE PSYCHOSIS/ or exp PARANOID PSYCHOSIS/ or exp SCHIZOAFFECTIVE PSYCHOSIS/ or exp MANIC PSYCHOSIS/ or exp AFFECTIVE PSYCHOSIS/ or exp ENDGENOUS PSYCHOSIS/ or exp ACUTE PSYCHOSIS/ or psychosis.mp. or exp PSYCHOSIS/ or schizophrenia.mp. or exp SIMPLE SCHIZOPHRENIA/ or exp PARANOID SCHIZOPHRENIA/ or exp SCHIZOPHRENIA/ or exp CATATONIC SCHIZOPHRENIA/ or exp RESIDUAL SCHIZOPHRENIA/ or exp LATENT SCHIZOPHRENIA/ or exp SCHIZOPHRENIFORM DISORDER/ or (schizophrenic or schizophrenics).mp. or mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name) AND (Randomized Controlled Trial/ or random$).mp.)
COCHRANE
(MeSH descriptor Psychotic Disorders explode all trees OR (psychosis OR psychotic OR schizophreni* OR schizoaffective)) AND ("first episode" OR "first onset" OR "early onset" OR naive OR "never medicated") AND (amisulprid* OR amitrex OR deniban* OR socian* OR solian* OR sulanid* OR sulamid* OR zyprexa* OR olanzapin* OR quetiapine OR seroquel OR ICI-204636 OR (ICI and 204636) OR ICI204636 OR risperidone OR risperdal OR 9-OH-risperidone OR ziprasidone OR cp-88059 OR abilit OR championyl OR coolspan OR col-sulpir OR digton OR dixibon OR dobren OR dogmatil OR dolmatil OR drominetas OR eglonyl OR equilid OR eusulpid OR guastil OR isnamid OR kapiride OR lavodina OR lebopride OR lusedan OR miradol OR mirbanil OR misulvan OR neuromyfar OR normum OR omperan OR psicocen OR quiridil OR sato OR sernevin OR sico-frenol OR sulphiride OR sulpisedan OR suprium OR sursumid OR tepavil OR tonofit OR ulpir OR vipral OR zotepine OR lodopin OR nipolet OR zopite OR setous OR majorpin OR clozapine OR clozaril OR leponex OR "Antipsychotic Agents" OR "Antipsychotic Agents" OR "Risperidone" OR "olanzapine" OR "olanzapine-fluoxetine combination" OR "9-hydroxy-risperidone" OR "Dopamine Antagonists" OR "Molindone" OR "typical antipsychotic" OR "atypical antipsychotic"
Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: meta-analysis
Nicolas A. Crossley, Miguel Constante, Philip McGuire and Paddy Power
Access the most recent version at DOI: 10.1192/bjp.bp.109.066217

Supplementary Material can be found at:
http://bjp.rcpsych.org/content/suppl/2010/06/02/196.6.434.DC1

This article cites 46 articles, 11 of which you can access for free at:
http://bjp.rcpsych.org/content/196/6/434#BIBL

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
http://bjp.rcpsych.org/letters/submit/bjprcpsych;196/6/434

Downloaded from http://bjp.rcpsych.org/ on June 27, 2017
Published by The Royal College of Psychiatrists