Cost of commercial protectionism in child health research

As someone with a background in both public health research and homeless services, I was recently approached by a group of voluntary agencies working with homeless families to assist them in conducting a research project to investigate the mental and physical health status of children passing through their services. The personnel involved were alarmed by what they saw as the largely undiagnosed, unmeasured and unmet needs the children presented. As part of my public service obligation as an academic, and having an interest in the topic, I readily agreed to help on a pro bono basis.

Attempting to identify a useful health measure threw up the routine issues of a lack of standardisation in assessment, a lack of national normative data, and the dearth of child health measures covering both mental and physical health. However, after an extensive search, two potential measures were identified. The first was the 50-item Parent Form of the Child Health Questionnaire (the CHQ-PF50), which is suitable for older children, and the second was the Infant/Toddler Quality of Life Questionnaire (ITQOL) for younger children.

This project was launched in response to real children’s needs in the Irish context of voluntary agencies operating on shoe-string budgets, in an era of tightening budgets, a reduction in a government expenditure of over €6 billion in the next financial year, and a bail out from the International Monetary Fund and European Union.

The next barrier was the fee for the use of the proposed measures. Although some may accept the need to charge fees as a commercial reality, it could equally be argued that a wider appraisal, incorporating good publicity, exposure, a worthy cause, and publications/citations may be equally valuable in the long term.

However, putting the issues of fees aside, two points in the proposed licence agreement with the licensing company, HealthActCHQ, were very disturbing. The first prohibited the development of the measures. HealthActCHQ stated that all ‘developmental work is undertaken exclusively by our scientific team’. The second issue of concern was the prohibition on developing normative data for Ireland. This restriction was explicitly stated: ‘HealthActCHQ does not allow anyone to undertake iterative work, such as the development of normative data’. It should be noted that no Irish normative data for either of these measures are available and, as far as can be ascertained, there is no ‘work in progress’.

It could be conceivable that through this commercial protectionism quality may be sacrificed for profit in the field of child health research. Companies in the psychometric and child health field are possibly stifling developments and improvements for commercial reasons. Furthermore, attempts at precision to overcome geographical, national, cultural, linguistic and temporal differences in normative scores are ignored and sacrificed.

Academics and clinicians need to be wary of health measures that may be suboptimal as a result of blatant commercial protectionism. Peer review and continued development are quality hallmarks that should not be swept aside lightly. Academics and clinicians need to cooperate to develop open-access standardised measures of child health status and matching normative data. Such a united focus would inevitably benefit all concerned, particularly those most in need.

1 Landgraf JM, Abetz L, Ware JE. The CHQ: A User’s Manual. The Health Institute, 1996.

Dr Frank Houghton, Limerick Institute of Technology, Limerick, Ireland. Email: Frank.Houghton@lit.ie. doi: 10.1192/bjp.199.2.164

Author’s reply: HealthActCHQ business is the development and the licensing of functional outcomes and quality-of-life surveys. HealthActCHQ is a privately owned, for-profit, scientific business. Since 1995, the company has been providing limited-use licenses for researchers. For more than 18 years, HealthActCHQ has developed and scientifically enhanced their total body of survey measurement work — including the Child Health Questionnaire (CHQ) and the Infant/Toddler Quality of Life Questionnaire (ITQOL). The company’s surveys have not been developed with government grants, educational endowments or any other public funds.

As a private company, we self-fund all survey development, continuing support and ongoing scientific research. All surveys, scoring and normative data are proprietary and confidential information of HealthActCHQ, and are protected under the US Copyright Act and are protected in Ireland under one or more international treaties or conventions. The surveys, scoring algorithms and normative data are not in the public domain. Further developmental work on the company’s intellectual property assets is the fiduciary obligation, role and right of our company’s internal scientific development staff.

The company’s website (www.healthactchq.com) openly provides detailed information for review prior to inquiry for registration on its licensing model and the terms and conditions for licensure and use. Licenses are granted to academic researchers, public health organisations, medical practice settings, clinical trials and others on the terms as presented at the website.

There are more than 350 international peer-reviewed manuscripts on the CHQ and the ITQOL presented on our website bibliography.

Declaration of interest
HealthActCHQ is the developer, owner and licensor of the CHQ and ITQOL as well as other patient-reported outcomes surveys,
Clinical trials of drug and behaviour therapies: methodological issues

Shimazu et al.1 designed a randomised controlled trial highlighting the efficacy of family psychoeducation compared with treatment as usual in the maintenance treatment of major depression. By definition, the index trial was a pragmatic trial. The authors did not use behavioural ‘placebo’ control groups, although in such a trial they are not necessarily needed. However, this study has faced bias with regard to recruitment and selection procedures, such as the exclusion of previous non-responders. Sample homogeneity is one of the ways to enhance the power of the study. The authors excluded patients who received electroconvulsive therapy, which improved the homogeneity. The bipolarity status, number of previous episodes, duration of untreated psychosis (DUP) and associated specifier (e.g. melancholic, atypical and psychotic features) might have been taken as inclusion criteria to improve it further. Alternatively, as clinical relevance is the primary consideration in pragmatic trials, differences in treatment structure (e.g. number of antidepressants, doses and length of treatment/follow-up sessions) may be ignored if they reflect clinical practice.

Participants might have a preference for only antidepressant or combined therapy, and this preference might undermine adherence (which is not addressed in this study), influence drop-out rate, and even affect treatment response.2 This could be avoided with a two-level randomisation design: first, randomised to two different treatment protocols; and second, randomised to receive preferred treatment. The participants’ expectation, which might be a confounding factor, was not a concern in this trial.

The frequently raised question ‘Does combining family psychoeducation therapy with antidepressant treatment enhance the maintenance of treatment effects following drug withdrawal?’ can only be addressed following drug withdrawal.3 The authors taken some of these measures, the confounding due to adherence would have been reduced.

The authors could have entered some additional factors into the Cox proportional hazards analysis, such as adherence, DUP, type of antidepressant, predominant side-effect and psychotic status of current episode, which may have made the analysis better powered.

The methodological issues we discuss here are not considered immutable, but are expected to evolve as investigators creatively tackle design issues when conducting drug–behaviour trials.


Authors’ reply: Biswas et al are correct that our study was a pragmatic trial, but beyond that there seem to be many misunderstandings and we are happy to respond to the points they raise.

First, we did not compare family psychoeducation with treatment as usual (TAU). The comparison was between psychoeducation plus TAU v. TAU alone. We asked the pragmatic question whether adding psychoeducation to TAU alone was any better than TAU and were able to answer it positively. The strengths and weaknesses of this type of comparison are fully discussed in our paper.

Second, we did not exclude previous non-responders. We did focus on responders to pharmacotherapy in the index episode because this was a trial of maintenance treatment, and it is very hard for us to logically imagine such a trial without focusing on responders. In addition, it appears meaningless to us that Biswas et al would like to assess bipolarity in a trial of major depression.

Third, Biswas et al seem to insinuate that we ignored ‘differences in treatment structure (e.g. number of antidepressants, doses and length of treatment/follow-up sessions).’ Our Table 1 shows that they were comparable between the two arms, where the doctors in charge of TAU were kept unaware whether their patients had their family participating in family psychoeducation or not. We strictly abided by the principle of ceteris paribus.

Fourth, we agree that adherence and allegiance are important but often ignored aspects in clinical trials. Adherence to the family psychoeducation by the family members was maximised because there was no missed session. Adherence to TAU by the patients may have been optimal or suboptimal but this is not a valid concern in our context because we minimised performance bias (i.e. differential TAU intensity between the two arms) by masking the doctors. Adherence to family psychoeducation by staff was ensured through videotaping and supervision. All these are explained in the paper. On the other hand, we admit we failed
to mention our allegiance to psychoeducation as researchers and therapists. We tried to minimise its influence by masking both the doctors in charge of TAU and the outcome assessors.

Fifth, Biswas et al advise that we examine effect modifiers and moderators. In our paper we explain that we did examine one strong empirically supported candidate variable in this regard, namely expressed emotion. And we failed to confirm its role as effect modifier or moderator.

Last but not least, unfortunately we must confess that we do not fully understand how the authors’ proposed ‘two-level randomisation’ or psychoeducation to ‘enhance the maintenance of treatment effects following drug withdrawal’ might work. We are more than willing to continue this discussion in order to ‘creatively tackle design issues when conducting drug–behaviour trials’.


Understanding the neuroprotective mechanisms of lithium may have clinical significance

The article by Forlenza et al1 is a useful addition to the literature. Disease-modifying drugs for dementia, and in particular Alzheimer’s disease, are sorely needed. Despite very strong preclinical science, translational studies have been relatively limited, so this sort of interventional trial is welcome.

The authors highlight the inhibition of glycogen synthase kinase-3 beta (GSK-3B), a serine/threonine kinase involved in the regulation of numerous intracellular signalling pathways, as the likely mechanism for any neuroprotective effects. Although it is true that there is a literature supporting this pathway, other potential disease-modifying pathways are influenced by lithium. For example, up-regulation of autophagy, an intracellular protein degradation pathway which is able to degrade mutant proteins associated with neurodegeneration, can rescue a variety of animal models of neurodegenerative disease.2 In fact, GSK-3B inhibition inhibits autophagy via its effect on the mTOR (mammalian target of rapamycin) pathway. Despite this, lithium ultimately induces autophagy via a dominant mechanism involving inositol monophosphatase inhibition.3 These distinctions are not trivial, as understanding the interactions of these pathways allows for more rational treatment design. For example, lithium and rapamycin (a drug which inhibits mTOR) provides greater neuroprotection in fly models of Huntington’s disease than either drug alone.4 Furthermore, numerous US Food and Drug Administration-approved drugs which are autophagy up-regulators have been identified. Many of these may have a more favourable side-effect profile than lithium, and preclinical work suggests their efficacy in animal models of neurodegenerative disease.5

The potential mechanisms for neuroprotection by lithium extend well beyond inhibition of GSK-3B. Working out which are most important is of more than scientific interest as it is likely to allow rational drug design and better selection of currently available drugs with neuroprotective potential.


Authors’ reply: We agree with the comments by Dr Underwood reinforcing that the mechanisms by which lithium may exert a neuroprotective effect in patients with amnestic mild cognitive impairment1 still must be clarified. The inhibition of glycogen synthase kinase-3 (GSK-3B) by lithium is a plausible effect, given its pivotal role in the pathogenesis of Alzheimer’s disease, but most likely not the only one. In addition to the prevailing mechanism of action involving the inhibition of inositol monophosphate and downstream effects towards the up-regulation of autophagy, many other neurobiological effects have been attributed to lithium. These include the inhibition of apoptosis and the up-regulation of neurotrophic cascades.2 The modification of these intracellular signalling systems by lithium has been shown to yield neurotrophic and/or neuroprotective effects, which have been consistently demonstrated in cell culture and animal models. These effects are probably unspecific and may be beneficial to patients with distinct psychiatric and neurodegenerative diseases, including bipolar disorder,3 amyotrophic lateral sclerosis4 and Alzheimer’s disease.5

We hypothesise that the inhibition of GSK-3B by lithium is more specific to processes that ultimately lead to the formation of neuritic plaques and neurofibrillary tangles. According to the ‘GSK3 hypothesis of Alzheimer’s disease’, overactive GSK-3B accounts for memory impairment, Tau hyperphosphorylation, increased beta-amyloid production and local plaque-associated inflammatory responses mediated by the microglia.3 The inhibition of GSK-3B is currently regarded as a candidate disease-modifying approach for the treatment and prevention of Alzheimer’s disease, and specific inhibitors such as NP-031112 are being tested in phase II clinical trials (www.clinicaltrials.gov). Therefore, lithium may contribute to the attenuation of the pathological process in Alzheimer’s disease through inhibition of GSK-3B, and deliver additional, unspecific benefits via modification of other signalling pathways that favour autophagy, preclude apoptosis and up-regulate the secretion of neurotrophic factors in the brain. Presumably, the interplay of complementary mechanisms is necessary to warrant clinically relevant benefits, which we were able to show in our study.7 We thus speculate that the effects of lithium on multiple homeostatic systems downstream from membrane receptor-based neurotransmission may in fact represent an advantage as a candidate drug for the treatment of complex neurobiological diseases. In our study, the doses of lithium used were very well tolerated. This,

Benjamin R Underwood, Consultant Psychiatrist, Suffolk Mental Health Partnership NHS Trust. Email: ben.underwood@smhp.nhs.uk
doi: 10.1192/bjp.199.2.166

Shinji Shimodera, Department of Neuropsychiatry, Kochi Medical School, Kochi, Japan. Email: shimodes@kochi-u.ac.jp; Kaie Shimazou, Department of Neuropsychiatry, Kochi Medical School, Kochi; Atsushi Nishida, Department of Schizophrenia Research, Tokyo Institute of Psychiatry, Tokyo, and Department of Psychiatry, Mie University Graduate School of Medicine, Tsu, Mie; Naoto Kammura, Department of Neuropsychiatry, Kochi Medical School; Hirokazu Fujita, Department of Neuropsychiatry, Kochi Medical School; Shimppei Inoue, Department of Neuropsychiatry, Kochi Medical School, Kochi; Toshiy A. Furukawa, Department of Health Promotion and Human Behaviour, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan.

doi: 10.1192/bjp.199.2.165a
together with its wide availability and low cost, warrant the further investigation of the potential protective effect of lithium in Alzheimer’s disease.

Declaration of interest
Funding for the present work provided by Conselho Nacional de Pesquisa Científica (CNPq, Project 554535/2005-0), Alzheimer’s Association (NIRG-08-90688), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Project 02/13633-7) and Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).


Understanding the neuroprotective mechanisms of lithium may have clinical significance
Benjamin R. Underwood

BJP 2011, 199:166.
Access the most recent version at DOI: 10.1192/bjp.199.2.166

References

This article cites 5 articles, 1 of which you can access for free at:
http://bjp.rcpsych.org/content/199/2/166.1#BIBL

Reprints/permissions

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;199/2/166

Downloaded from
http://bjp.rcpsych.org/ on June 27, 2017
Published by The Royal College of Psychiatrists