A substantial number of pregnant women experience depressive symptoms during pregnancy with prevalence rates of depression in the range 7–13% and 4–7.6% of pregnant women are treated with antidepressants. Mental disorders and psychotropic drugs may influence the development of the fetus, but the associations are unclear, and mechanisms are poorly understood. Antidepressants readily cross the placental barrier potentially influencing the development of the fetus, but the contribution from the underlying depressive disorder might influence this association.

To estimate the effects of maternal depression and use of antidepressants during pregnancy on low Apgar scores (<7) 5 min after birth.

Results
Infants exposed to antidepressants during pregnancy had an increased rate of a low Apgar score (odds ratio (OR) = 1.72, 95% CI 1.34–2.20). The increased rate was only found among infants exposed to selective serotonin reuptake inhibitors (SSRIs) (OR = 1.96, 95% CI 1.52–2.54), not among those exposed to newer (OR = 0.83, 95% CI 0.40–1.74) or older antidepressants (OR = 0.53, 95% CI 0.19–1.45). Maternal depression before or during pregnancy, without prescription of antidepressants, was not associated with a low Apgar score (OR = 0.44, 95% CI 0.11–1.74). Women who had only used antidepressants prior to pregnancy had no increased rate of a low Apgar score in their subsequent pregnancy, regardless of depression status.

Use of SSRIs during pregnancy increases the risk of a low Apgar score independently of maternal depression.

The Medical Birth Register16 includes data on date of birth, gestational age, Apgar score 5 min after birth, birth weight, length of fetus, maternal smoking status during pregnancy, parity and maternal age on all deliveries in Denmark. Data from births of more than one child from 1996 to 2006 were included whereas twin births were excluded, implying that the same woman could be included more than once.

The Medical Birth Register includes data on date of birth, gestational age, Apgar score 5 min after birth, birth weight, length of fetus, maternal smoking status during pregnancy, parity and maternal age on all deliveries in Denmark. Data from births of more than one child from 1996 to 2006 were included whereas twin births were excluded, implying that the same woman could be included more than once.

The Medical Product Statistics is a nationwide prescription database containing individual information on all prescriptions filled at all Danish pharmacies from 1995 and onwards. Data included and distinguished between ATC codes (Anatomical Therapeutical Chemical classification system) for antidepressant, antipsychotics, anti-epileptics and ‘other kinds of drugs’. Antidepressants were classified as selective serotonin reuptake inhibitors (SSRIs: fluoxetine, citalopram, escitalopram, paroxetine, sertraline, fluvoxamine: ATC N06AB03–10), newer antidepressants (nefazodone, mirtazapine, venlafaxine, reboxetine: ATC N06AX06,
or older antidepressants consisting mainly of tricyclic antidepressants (imipramine, clomipramine, trimipramine, lofepramine, amitriptyline, nortriptyline, doxepin, dosulepin, amoxapine, maprotiline; mianserin, isocarboxazid, moclobemide: ATC N06AA02–7, N06AA09–12, N06AA16–17, N06AA21, N06AX03, N06AF01 and N06AG02).

The Danish Psychiatric Central Register is a nationwide psychiatric register with data from all public mental health services both as in- and out-patients. Data extracted were ICD-8 and ICD-10 codes for depression (i.e. ICD-8 codes 29609 and 29629, ICD-10 codes DF32.00–DF33.99). Statistics Denmark provided data on employment status on a yearly basis for the women included.

Statistical analyses

Pregnant women were divided into eight risk groups according to their exposure to a diagnosis of depression before the end of pregnancy, use of antidepressants before pregnancy and antidepressant use during pregnancy (see Table 2, Model 1). Group 1 was the reference group.

Additional analyses were done using three binary variables (+ diagnosis before end of pregnancy; ± antidepressants before pregnancy; ± antidepressants during pregnancy; see Table 1 and lower part of Table 2, Model 2).

To avoid assumptions of linearity, Apgar score at 5 min was divided into two groups: Apgar score from 0 to 6 and 7 to 10 in accordance with the dichotomisation in prior studies showing poorer intellectual, cognitive, social and clinical outcome related to an Apgar score < 7 at 5 min.

Logistic regression analyses were applied with Apgar score as the outcome and risk group as the variable of interest. The analyses were adjusted for the effect of calendar periods (1996, 1997, 1998 etc. to 2006), maternal age, parity (first child, second child, child number three or more), employment status (employed, unemployed, disability pension and retired, student, child and others), smoking status (non-smoker, quit smoking, smoking, unknown), gestational age, gender of the child, birth weight and use of other medication during pregnancy, including use of lithium (yes/no), anti-epileptics (yes/no), antipsychotics (yes/no) and other kinds of medication than antidepressants, lithium, anti-epileptics or antipsychotics (yes/no). In the analysis, employment status was dichotomised into ‘working and students’ v. the remaining groups.

To account for the fact that some women contributed with more than one live birth, robust standard errors were compared with the model-based standard errors. Since the impact of this adjustment was minimal, only model-based standard errors are reported.

Results

The data-set included all pregnant women in Denmark from 1996 to 2006. Infants with a gestational age of less than 22 weeks were excluded from the data resulting in a total of 672,601 live births. Data on birth weight were available from 668,144 live births (99.3%) and data on Apgar score at 5 min were available for 665,399 live births (98.93% of all live births) resulting in 664,089 live births with full data on Apgar score and other

Table 1 Characteristics of pregnant women and offspring according to antidepressant therapy and depressive diagnosis

<table>
<thead>
<tr>
<th>Maternal characteristics</th>
<th>Antidepressant medication before pregnancy(n=33084)</th>
<th>Antidepressant medication during pregnancy(n=8375)</th>
<th>Depression diagnosis before end of pregnancy(n=3916)</th>
<th>All pregnancies (n=664089)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years: median (IQR)</td>
<td>30 (27–34)</td>
<td>30 (27–34)</td>
<td>30 (26–34)</td>
<td>30 (26–33)</td>
</tr>
<tr>
<td>Parity, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First child</td>
<td>41.7</td>
<td>43.1</td>
<td>41.2</td>
<td>42.8</td>
</tr>
<tr>
<td>Second child</td>
<td>34.4</td>
<td>32.1</td>
<td>36.5</td>
<td>37.6</td>
</tr>
<tr>
<td>Third child</td>
<td>23.9</td>
<td>24.9</td>
<td>22.3</td>
<td>19.7</td>
</tr>
<tr>
<td>Smoking status, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>64.2</td>
<td>57.7</td>
<td>60.8</td>
<td>68.9</td>
</tr>
<tr>
<td>Smoking</td>
<td>27.2</td>
<td>31.5</td>
<td>29.1</td>
<td>16.2</td>
</tr>
<tr>
<td>Quit smoking</td>
<td>2.7</td>
<td>2.8</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>5.9</td>
<td>8.0</td>
<td>7.0</td>
<td>13.1</td>
</tr>
<tr>
<td>Lithium-treatment, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>99.9</td>
<td>99.8</td>
<td>99.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.01</td>
</tr>
<tr>
<td>Anti-epileptic treatment, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>98.7</td>
<td>97.2</td>
<td>97.9</td>
<td>99.6</td>
</tr>
<tr>
<td>Yes</td>
<td>1.3</td>
<td>2.8</td>
<td>2.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Antipsychotic treatment, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>98.1</td>
<td>94.3</td>
<td>95.3</td>
<td>99.8</td>
</tr>
<tr>
<td>Yes</td>
<td>2.0</td>
<td>5.7</td>
<td>4.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Other medication, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>21.5</td>
<td>17.5</td>
<td>20.0</td>
<td>32.1</td>
</tr>
<tr>
<td>Yes</td>
<td>78.5</td>
<td>82.6</td>
<td>80.1</td>
<td>67.9</td>
</tr>
<tr>
<td>Characteristics child, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female child</td>
<td>48.4</td>
<td>48.1</td>
<td>48.3</td>
<td>48.7</td>
</tr>
<tr>
<td>Apgar score, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 7</td>
<td>99.3</td>
<td>98.9</td>
<td>99.4</td>
<td>99.4</td>
</tr>
<tr>
<td>< 7</td>
<td>0.7</td>
<td>1.1</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

IQR, interquartile range.

a. Each of the three columns are binary antidepressant medication before pregnancy (yes/no), antidepressant medication during pregnancy (yes/no), depression diagnosis before end of pregnancy: yes/no and presents data for those patients fulfilling the criteria (yes). The columns are not mutually exclusive.
Additional analyses using three binary variables confirmed the results as only children of women using antidepressants during pregnancy had an increased risk of a low Apgar score (OR = 1.67, 95% CI 1.30–2.14); unadjusted OR = 1.87 (95% CI 1.41–2.47) whereas there was no effect of use of antidepressants before pregnancy or a diagnosis of depression (see lower part of Table 2, Model 2). These results did not change, resulting in ORs within the same ranges, when Model 2 was repeated with exclusion of preterm births, i.e. gestational age <36 weeks (antidepressants before pregnancy: OR = 0.95, 95% CI 0.79–1.14; antidepressants during pregnancy: OR = 1.87, 95% CI 1.41–2.47; diagnosis of depression before end of pregnancy: OR = 0.69, 95% CI 0.41–1.15).

Further analyses of subtypes of antidepressants showed that only use of SSRIs during pregnancy increased the OR of a low Apgar score whereas there was no effect of use of newer antidepressants or other antidepressants during pregnancy (Table 3, although a formal test of homogeneity resulted in only a borderline significant difference, $P = 0.052$). Using antidepressants before conception did not significantly increase the OR for a low Apgar score regardless of the type of antidepressant.

There was no differential effect of timing of the use of antidepressants during various trimesters (first trimester: OR = 1.16, 95% CI 0.83–1.63; second trimester: OR = 1.51, 95% CI 0.90–2.53; third trimester: OR = 1.42, 95% CI 0.85–2.38), which may be explained by the limited sample size in these analyses.

Discussion

We found that a low Apgar score was attributed to the use of SSRIs during pregnancy and not to the effect of the disease or associated lifestyle factors. Non-SSRI antidepressants were not associated with a low Apgar score. No increased rates were found among women who used antidepressants prior to pregnancy (but not during; risk group 2) or who had a diagnosis of depression but used no antidepressants during pregnancy (risk groups 5 and 6).

The Apgar score 5 min after birth is a clear index of problems in adult life; studies have shown that infants with low Apgar scores (<7 at 5 min) are at increased risk of a low IQ score at age 18 (OR = 1.35, 95% CI 1.07–1.69),11 never receiving graduation grades (OR = 1.93, 95% CI 1.75–2.14),12 never attending university.
Jensen et al demonstrated in rodents. Offspring after maternal exposure to antidepressants have been examined. Older and newer antidepressants have not been investigated. Antidepressants or older antidepressants (mainly tricyclic antidepressants; Table 3). A recent review suggests that antenatal antidepressants during pregnancy has been associated with a number of risks. The study shows that treating depression does, however, still possible but would have to act specifically on the non-medicated controls to explain our main result (see Table 2).

We were able to take into account other possible risk factors for a low Apgar score (i.e. parity, maternal smoking status, maternal smoking status, calendar year, other medication and gestational age). In our models, these factors did not explain the higher ORs for a low Apgar score for children born of mothers using antidepressants during pregnancy. This finding was independent of whether the mother had a diagnosis of depression or not. Confounding by unmeasured factors or residual confounding is, however, still possible but would have to act specifically on the women with depression and who took medication and not on the non-medicated controls to explain our main result (see below). The aim of this study was not to determine whether pregnant women with depression should be treated with antidepressants or not. The study shows that treating depression does have consequences that should be taken into consideration when a physician informs a female patient about risk factors enabling her to make an evidence-based decision. Thus, although the probability of a low Apgar score was increased more than 70% in children whose mother had used SSRIs during pregnancy, compared with healthy women, the absolute prevalence of a low Apgar score was still low (1.14%, Table 1). Further, treatment with antidepressants during pregnancy has been associated with a number of other birth complications such as low birth weight and preterm delivery, but it should be noted that none of these studies has taken the potential effect of the depressive illness into account.

We found a lower prevalence of depression (i.e. 0.6%) than previously reported as we used data from nationwide databases, which only include information from hospital-based psychiatric facilities and not from general practitioners. Consequently, we had data on a diagnosis of depression only for women with more severe and complicated depressive illnesses. For these women, we found no association between depression and Apgar score and thus believe that the effects of milder forms of depression are unlikely. We have no reason to suspect a reverse dose–response relationship between depression and birth outcome. Further, the impact of antidepressants on birth outcome seems to be independent of severity of depression. In the present study, only 1.26% of the pregnant women were treated with antidepressants. The low percentage is explained by the fact that data were gathered from 1996 at which time it was uncommon to treat pregnant women with antidepressants. The number of women treated with antidepressants during pregnancy in the sample increased steadily each year from 232 in 1996 to 1453 in 2005. The increase in prevalence of pregnant women undergoing treatment is also found in other countries, for example in the USA.1,3

Strengths

We used information from national registers with longitudinal data on inhabitants from an entire country. The data in these registries are collected prospectively and therefore recall bias is excluded. In contrast, in retrospective studies the recall of potential treatment with antidepressants during pregnancy may be influenced by the prevalence of birth complications. The study presents data from almost 665,000 births and is able to adjust for a number of potential confounders including all medication other than antidepressants. We had almost complete data with, for example, information on the Apgar scores for 98.9% of infants. The number of women who did not use antidepressants during pregnancy but who previously had used antidepressants or had a diagnosis of depression was rather large and consequently the statistical power to detect an association between depressive illness per se and a low Apgar score was high, as reflected by the narrow 95% confidence intervals (Table 2).

Limitations

Redeeming a prescription does not necessarily mean that the woman actually took the medication, although having paid for it at a pharmacy increases the possibility. The potential exposure misclassification tends to underestimate the effect of antidepressant drugs or overestimate the effect of depression among women that we coded as unexposed.

The timing of maternal depression varied in the study and the extent to which women presented with depressive symptoms before compared with during pregnancy may be unclear. In fact, 3245 women received a diagnosis of depression before pregnancy (with a median period from the time of diagnosis to pregnancy of 801 days (quartiles: 346, 1568)) and 918 received a diagnosis during pregnancy. It is likely that the former group may have presented with depressive symptoms of differing severity during pregnancy although only 27% of this group got antidepressants during pregnancy. Nevertheless, we can only conclude from our results that having a depressive disorder at one point in time before the end of pregnancy was not associated with an increased risk of a low Apgar score when the pregnant women did not use antidepressants during pregnancy (risk groups 5 and 6 in Table 2).
We cannot exclude the possibility that the risk of a low Apgar score would have been increased for these groups if our sample included more pregnant women who received a diagnosis of depression during pregnancy.

It is unlikely that the association between antidepressants and a low Apgar score is the result of congenital abnormalities as such heart defects owing to the low prevalence of these. In any case, if an Apgar score <7 in some cases is a consequence of a congenital heart defect, this further emphasises the clinical importance of the Apgar score measure. The study does not control for alcohol consumption, for age of the father or severity of depression, as these data were not available.

Generalisability

It is most likely that the findings can be generalised to all women taking antidepressants regardless of the indication for treatment (depression, anxiety, etc.) or the severity of illness.

In conclusion, women who are treated with SSRIs during pregnancy have an increased risk of giving birth to an infant with an Apgar score of 6 or lower 5 min after birth. The effect seems to take antidepressants regardless of the indication for treatment.

References

Maternal depression, antidepressant use in pregnancy and Apgar scores in infants
Hans Mørch Jensen, Randi Grøn, Øjvind Lidegaard, Lars Henning Pedersen, Per Kragh Andersen and Lars Vedel Kessing
BJP 2013, 202:347-351.
Access the most recent version at DOI: 10.1192/bjp.bp.112.115931

References
This article cites 35 articles, 4 of which you can access for free at:
http://bjp.rcpsych.org/content/202/5/347#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;202/5/347

Downloaded from
http://bjp.rcpsych.org/ on June 28, 2017
Published by The Royal College of Psychiatrists