Dementia is a major and increasing public health concern. There are currently over 800,000 people with dementia in the UK, and approximately 6% of these individuals are estimated to be in hospital at any one time, ten times the rate in older adults without dementia. People with dementia in acute general hospital wards are extremely vulnerable and suffer from increased mortality, as well as other adverse outcomes including longer length of stay, increased rates of delirium and new institutionalisation. There is general agreement that unscheduled admission to hospital should be avoided or prevented in this group, where possible. However, little attention has been paid to the factors which might influence the risk of a person with dementia being admitted to hospital, as highlighted by a recent systematic review on the topic. Candidate risk factors include age, gender, function, behaviour, medication use and comorbidity. Published studies on risk of admission are either based on clinical samples, which limits the generalisation of their findings to the general population, or are limited in size, duration of follow-up or the detail in which participants are characterised at baseline. Here we present a prospective cohort study of the association between baseline health, cognitive and functional status and admission to general hospital in a well-characterised national sample of community-dwelling older adults with dementia from across Scotland covering 75% of the Scottish population including both urban and rural areas. Additional details of the SDRIR and recruitment to it are available in a published report. Approximately 95% of SDRIR registrants consented to record linkage.

Background
People with dementia are extremely vulnerable in hospital and unscheduled admissions should be avoided if possible.

Aims
To identify any predictors of general hospital admission in people with dementia in a well-characterised national prospective cohort study.

Method
A cohort of 730 persons with dementia was drawn from the Scottish Dementia Research Interest Register (47.8% female; mean age 76.3 years, s.d. = 8.2, range 50–94), with a mean follow-up period of 1.2 years.

Results
In the age- and gender-adjusted multivariable model (n = 681; 251 admitted), Neuropsychiatric Inventory score (hazard ratio per s.d. disadvantage 1.21, 95% CI 1.08–1.36) was identified as an independent predictor of admission to hospital.

Conclusions
Neuropsychiatric symptoms in dementia, measured using the Neuropsychiatric Inventory, predict non-psychiatric hospital admission of people with dementia. Further studies are merited to test whether interventions to reduce such symptoms might reduce unscheduled admissions to acute hospitals.

Declaration of interest
None.

Method

The Scottish Dementia Research Interest Register (SDIR) comprises people from a variety of demographic backgrounds who have been diagnosed by a clinician as having dementia or a related cognitive disorder (and carers, who were not included in this study) and who have consented (or in cases where the person lacked capacity, through his or her legal representative) to the storage of information on demographic, cognitive, functional and behavioural measures and have expressed an interest in being approached for participation in future research studies. At the time of this study people had been enrolled from eight areas of Scotland.
disagreement resolved by discussion or, if necessary, consultation with the third clinician. The medications recorded for each person were scrutinised and individuals prescribed cholinesterase inhibitors or antipsychotics were separately flagged. Additionally, any potentially inappropriate medication for use in older adults was identified according to the updated Beers criteria.23

Informed consent for potential data linkage was obtained from all participants at the time of registration on the SDRIR or, if they were incapable of consent, from their legal representative. Ethical approval for the SDRIR and the data linkage was granted by the Scotland A Research Ethics Committee and the record linkage was approved by the Privacy Advisory Committee of the Information Services Division of National Health Service (NHS) National Services Scotland.

Statistical analysis
Data from consenting registrants on the SDRIR were linked, using the unique Community Health Index number, with Scottish Morbidity Records 01 and 04 which respectively record all admissions to general and psychiatric hospitals in Scotland. The date of the admission and all diagnostic codes recorded on admission and discharge were recorded. For this analysis admission to a general hospital was the outcome of interest; data for individuals admitted to a psychiatric hospital were censored at that point. The SDRIR data are held by the Health Informatics Centre (HIC) at the University of Dundee and the anonymised, linked data-set was accessed through and analysed in the HIC safe haven using IBM SPSS Statistics version 21.

We calculated the time in calendar days from the date of entry to the SDRIR until the first admission to a general hospital for any reason. For people who were not admitted to hospital, data were censored either at 2 June 2012 or at the date of admission to a psychiatric hospital (n = 25), whichever came first. After confirming that the proportional hazards assumption was valid, we used Cox regression models to produce hazard ratios with accompanying 95% confidence intervals for the association between individual baseline covariables and admission to hospital.24 Covariables examined comprised dementia subtype, the presence of vascular risk factors or comorbidity, having a carer, MMSE, IADL and PSMS scores, total NPI score, NPI caregiver distress score, CDR rating and CDR sum of boxes. Given the possibility that cholinesterase inhibitor use may be associated with reduced risk of entry to nursing home care,25 and the concerns surrounding the use of antipsychotic drugs,26 these variables were also included, as was being prescribed a potentially inappropriate medication. For this analysis continuous variables were standardised so that hazard ratios reflected 1 s.d. disadvantage regardless of the original direction of the scale. There was no effect modification by gender and therefore data for men and women were pooled. All models included age and gender as these were thought to be of importance a priori. Next, having considered bivariate associations, we noted that some variables were moderately correlated (e.g. MMSE and IADL), but age was not associated with admission rates at conventional levels of statistical significance (per 5 years older, HR = 1.02, 95% CI 0.99–1.04; P = 0.22), but age was not associated with admission rates at conventional levels of statistical significance (per 5 years older, HR = 1.02, 95% CI 0.99–1.04; P = 0.22).

Bivariate analyses
Men were more likely to be admitted to hospital than women (HR = 1.32, 95% CI 1.04–1.68; P = 0.022), but age was not associated with admission rates at conventional levels of statistical significance (per 5 years older, HR = 1.02, 95% CI 0.99–1.04; P = 0.22). Online Table DS2 shows the association between other baseline covariables and subsequent admission to hospital. There was no increased risk of admission for any diagnostic subtype, apart from the category of ‘other dementia’, incorporating...
dementia with Lewy bodies, Parkinson’s disease dementia, fronto-temporal lobar degeneration and ‘other dementia, not specified’. The suggestion that people with non-Alzheimer’s, non-vascular dementia subtypes might be more likely to be admitted to hospital owing to a higher frequency of neuropsychiatric symptoms in those conditions was explored in a Cox model incorporating age and gender with total NPI score and diagnostic grouping selected by forward conditional stepwise entry. Total NPI score remained significant independent predictor of admission to hospital (per s.d. disadvantage HR = 1.21, 95% CI 1.08–1.36; P = 0.001) and the NPI carer distress rating (HR = 1.18, 95% CI 1.04–1.33; P = 0.01) were both associated with an increased risk of admission to hospital. People with more advanced dementia based on CDR score were not more likely to be admitted to hospital than people with milder dementia (P_trend = 0.45). The CDR sum of boxes was similarly not statistically significantly associated with hospital admission.20

Multivariable model

Constructing a multivariable model using forward conditional stepwise entry highlighted NPI score as the only statistically significant independent predictor of admission to hospital (per s.d. disadvantage HR = 1.21, 95% CI 1.08–1.36; P = 0.001; based on 251 admissions out of 681 individuals).

Further analyses

To examine the association between NPI score and hospital admission in more detail, we divided NPI scores into three groups based on recommended thresholds: those scoring 0 (the referent), 1 to 14 and greater than or equal to 15.27 There was a dose–response association between increasing NPI score and hospital admission (v. NPI score of 0: NPI score 1–14 HR = 1.29, 95% CI 0.95–1.76; NPI score ≥15 HR = 1.82, 95% CI 1.30–2.56; P_trend = 0.002), as shown in Fig. 2. Examining individual neuropsychiatric symptoms (NPI items) in a post hoc multivariable model using forward stepwise conditional entry highlighted agitation (per s.d. increase HR = 1.28, 95% CI 1.14–1.43;
as the most important aspect of the NPI in terms of predicting admission to hospital.

Data were missing for one or more variables in 21.1% of the sample ($n = 154$). People with missing data were slightly younger, more likely to be female, less likely to have vascular risk factors but more likely to have a comorbidity of any sort, were more likely to have no carer and to have had more severe dementia, according to CDR and MMSE, but scored slightly better on IADL, PSMS and both scales of the NPI (online Table DS2). Thus, individuals with missing data did not uniformly have less favourable levels of risk factors. Using multiple imputation to account for missing data in the multivariable models did not alter our conclusions (per s.d. disadvantage in NPI score HR = 1.20, 95% CI 1.07–1.35; $P = 0.003$; ‘other dementia’ HR = 1.56, 95% CI 1.02–2.40; $P = 0.043$).

Discussion

Our main finding was that a person with dementia being admitted to hospital over a mean of 1.2 years was predicted by their total NPI score, with risk increasing as category of severity rises. Further analyses suggested that agitation was the most important predictor within the NPI scale. Among the modifiable factors associated with dementia, bivariate analyses identified a relationship between risk of admission and comorbidity, carer distress and self-care, but these relationships did not persist in multivariable analyses. The risk of admission was significantly lower in the low and middle categories of NPI score than the highest category. Observing this association gives us little information about the possible mechanism. One could speculate that more neuropsychiatric symptoms at baseline could reflect a higher burden of physical illness. Alternatively, the exacerbation of these symptoms, when already present, might be a common trigger for a general practitioner to seek admission. Whatever the mechanism, these symptoms are potentially modifiable and the important question is raised whether modifying them reduces unscheduled hospital admissions.

Neuropsychiatric symptoms are often important predictors of nursing home admission, and some consideration of these findings may be helpful. Persistent agitation or aggression early in dementia diagnosis may be associated with subsequent depressive symptoms in caregivers. Furthermore, time-varying measures of caregiver burden fully mediated the relationship between four behavioural disturbances (episodes of combative

![Fig. 2](https://example.com/fig2.png)

Fig. 2 Kaplan–Meier curves for time to general hospital admission in people with dementia stratified by Neuropsychiatric Inventory (NPI) score.
property destruction, repetitive questions and reliving the past) and nursing home admission. Caregivers who did not indicate a care recipient’s dangerous behaviour initially but did so subsequently (an ‘incident’ behaviour problem) were more likely to experience increases in burden ($P < 0.0026$). Caregivers who indicated greater emotional stress, a desire for the care recipient to enter institutional care and feelings of being ‘trapped’ in care responsibilities were more likely to admit people with dementia to nursing homes. However, demographic variables, incontinence and service use did not consistently predict nursing home admission.

Thus, there are important parallels with factors that influence admission to care homes, particularly as behavioural changes in people with dementia are common and persistent. Our data are in keeping with the hypothesis that persistence of behaviour problems increases the risk of home placement breaking down and point to focusing on interventions reducing neuropsychiatric symptoms, especially agitation, which is among the most persistent of these problems, as those are potentially likely to decrease the risk of a person with dementia being admitted to a general hospital.

People with dementia are frequently admitted to hospital, and the issue of people with dementia in the general hospital is an important one; where possible, unscheduled admissions should be avoided in this patient group. However, it is surprising that, despite growing recognition of the public health importance of dementia, particularly in the setting of the general hospital, just over half of these people with confirmed dementia had their diagnosis correctly recorded on discharge from hospital. Recognising that a patient newly admitted to the general hospital has dementia is vital, perhaps most importantly as these people are at high risk of developing delirium which may be partially preventable, but also because the process of discharge planning should be informed by their diagnosis.

Rarer forms of dementia, including frontotemporal lobar degeneration, are often associated with more prominent neuropsychiatric symptoms. This group was more likely to be admitted to hospital during follow-up in the bivariable models, but it seems that it might be the NPI score itself rather than diagnostic group per se which is driving this association. Although the mean NPI score was higher in the ‘other dementia’ category (17.9, s.d. = 17.8, v. 10.9, s.d. = 15.1; $P = 0.012$) the maximum scores were much higher in the Alzheimer’s disease, mixed and vascular dementia group (105 points v. 61 points). This is confirmed by the result of the Cox regression model including both the ‘other’ diagnostic category and total NPI score – only total NPI score remained statistically significant at conventional levels.

Comparison with other studies

Dementia is associated with an increased risk of hospital admission but few studies have investigated the impact of individual characteristics of people with dementia on their risk of admission. A recent systematic review of risk factors for people with dementia being admitted to hospital, comprising ten studies, reported that behavioural disturbance was associated with an increased risk of admission. The results of our study echo this and our finding that agitation may be the most important symptom is consistent with the findings reported in this systematic review.

There is little published research prospectively studying cohorts of people with dementia to identify baseline risk factors for admission to hospital. An American teaching hospital cohort study of 827 men and women with Alzheimer’s disease found that 66% were admitted to hospital at least once over a median follow-up period of 3 years, compared with 41% over a mean 1.2 years in our study. They identified five independent risk factors: higher comorbidity, previous hospital admission, older age, male gender and shorter duration of dementia. These are similar to our findings apart from the effect of age (details of illness duration and previous admission to hospital were not available on the SDDRIB), but they did not include measures of neuropsychiatric symptoms or function. The Réseau sur la Maladie d’Alzheimer Français (REAL.FR) study followed 686 patients with Alzheimer’s disease from all over France for 2 years and found that 29% were admitted to hospital at least once in that period. They identified three independent risk factors for hospital admission: functional impairment, polypharmacy and greater NPI score. However, they did not present data on antipsychotic or inappropriate medication use within the polypharmacy risk they identified. Another French study following 134 patients with Alzheimer’s disease from a memory clinic found that 23% were admitted to hospital in the following year. They identified that an inability to bathe independently and lower educational attainment were independent risk factors for admission to hospital, but had limited data on comorbidities and medication, and a small, unrepresentative sample.

Strengths and limitations

This is the largest general population prospective study of risk factors for hospital admission in dementia resulting in adequate power to detect fairly small effect sizes, including identifying a dose–response association between NPI score and hospital admission. A post hoc power calculation suggested that our sample size was powered to detect hazard ratios of approximately 1.2 with 80% power and a significance level of 0.05. It was possible to follow these individuals up for up to 3.3 years during which period a large number were admitted to acute hospitals. The diagnostic categories were based on clinical diagnoses and were independently verified by two clinicians and so are likely to be robust. These people were at a relatively early stage of their illness at baseline, as demonstrated by the MMSE and CDR scores, and all were then community residents, so it may not be possible to extrapolate these results to all people diagnosed with dementia. However, the fact that this sample consisted mainly of people with mild to moderate dementia does not make the results any less important. The supplementary analysis examining individual NPI items was not specified a priori, but the fact that it supports findings from a previous systematic review gives us some confidence in this result.

Since the hospital admissions were identified from national surveillance data-sets, it is likely that all hospital admissions were identified, that these data are robust, and thus the times to admission or censoring from entry to the register are accurate. The mean time to admission was 0.8 years and so the symptoms might not have still been present at the time of admission. However, neuropsychiatric symptoms have been shown to be relatively persistent, for example up to 67% for agitation over a period of 2 years. Comprehensive baseline data were available for participants, collected in a standardised manner by trained, skilled clinical studies officers from the Scottish Dementia Clinical Research Network. Furthermore, item-level data were available, allowing us to examine, for example, individual NPI items. The findings from the models using multiple imputation were similar to the main results, suggesting that missing data did not have a substantial effect on our conclusions.

Implications and further research

This study investigated a common and important condition and an important setting – the general hospital. Indeed, people with
dementia in general hospitals were one of the main foci of the first Scottish Dementia Strategy.15 Our data were drawn from across Scotland, which avoids any problems with factors affecting hospital admission at a regional level such as local policies. Although the sample covers much of the country, it is not representative of the general population of people with dementia. Since these individuals are selected by expressing an interest in participating in dementia research, it is likely that they are healthier than the general population of people with dementia. This will affect the generalisability of our findings, but it is likely that conclusions drawn from studying this community-based sample can be broadly applied to the wider population of people with dementia.

If we accept our finding that total NPI score predicts acute general hospital admission in people with dementia, careful consideration is needed regarding the implications of this. Further research is needed to identify whether these admissions could be avoided through interventions to treat neuropsychiatric symptoms. If it is the case that interventions to reduce neuropsychiatric symptoms and thus NPI score also reduce admission rates to hospital in this vulnerable group, many of the adverse consequences for people with dementia of being in hospital might be avoided. Our results suggest that such interventions should be targeted at individuals with higher levels of neuropsychiatric symptoms (NPI score ≥15). Moreover, because neuropsychiatric symptoms correlate positively with carer strain,17 interventions that reduce neuropsychiatric symptoms might shorten admissions since carers under less strain might be more willing to accept discharge back home. Furthermore, risk stratification tools to predict unplanned hospital admissions,16 for example those used in the National Health Service in England & Wales, do not currently incorporate mental health variables. Our results suggest that, at least in people with dementia, these variables may be among the most important in predicting unscheduled hospital admissions.

Clinical trials to examine whether a reduction in neuropsychiatric symptoms in people with dementia reduces unscheduled hospital admissions are now warranted. If this proved to be a modifiable risk factor for such admissions, it could have substantial clinical and public health impact.

Tom C. Russ, PhD, MRCPsych, Alzheimer Scotland Dementia Research Centre, University of Edinburgh, and Scottish Dementia Clinical Research Network, National Health Service Lothian, Edinburgh, Scotland; Murray Royal Hospital, Perth, and Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, and Division of Psychiatry, University of Edinburgh; Mário A. Parra, PhD, Alzheimer Scotland Dementia Research Centre, University of Edinburgh, and Scottish Dementia Clinical Research Network, NHS Scotland; Murray Royal Hospital, Perth, and Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, and UK; and UCPD-INECO Foundation Centre on Neuroscience (IEF/UCP), Diego Portales University, Santiago, Chile; Alison E. Lim, Alzheimer Scotland Dementia Research Centre, University of Edinburgh; Emma Law, RMN, MPH, Peter J. Connelly, MD, FRCPsyCh, Scottish Dementia Clinical Research Network, NHS Scotland; Murray Royal Hospital, Perth; John M. Starr, PhD, FRCPED, Alzheimer Scotland Dementia Research Centre, University of Edinburgh, and Scottish Dementia Clinical Research Network, NHS Scotland; Murray Royal Hospital, Perth, and Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, UK.

Correspondence: Dr Tom C. Russ, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Morningside Terrace, Edinburgh EH10 5SH, UK. Email: tc.russ@ed.ac.uk

First received 28 Feb 2014, final revision 1 Jul 2014, accepted 8 Jul 2014

Funding

Currently employed by the University of Edinburgh and NHS Lothian, from 2009 to 2013, T.C.R. was supported by Alzheimer Scotland. T.C.R., M.A.P., A.E.L. and J.M.S. are members of the Alzheimer Scotland Dementia Research Centre at the University of Edinburgh. T.C.R., M.A.P. and J.M.S. are members of the University of Edinburgh Centre for Cognitive Ageing & Cognitive Epidemiology, part of the cross-council Lifelong Health and Wellbeing Initiative (G070207/1/484698); funding from the Biotechnology and Biological Sciences Research Council, the Engineering and Physical Sciences Research Council, the Economic and Social Research Council and the Medical Research Council is gratefully acknowledged for the latter. M.A.P.’s work is supported by Alzheimer’s Society grant AS-R42303. The Scottish Dementia Clinical Research Network is funded by the Chief Scientist Office of the Scottish Government.

References

6. Working Group for Liaison Mental Health Services for Older People, Faculty of Old Age Psychiatry, Royal College of Psychiatrists. Who Cares Wins. Improving the Outcome for Older People Admitted to the General Hospital: Guidelines for the Development of Liaison Mental Health Services for Older People. Royal College of Psychiatrists, 2005.

Psychiatry

Wes Anderson’s The Grand Budapest Hotel

Roxanne Keynejad

I never lost my childhood awe of the author’s creative power to craft characters from pure imagination. Perhaps this is why I chose psychiatry: the personalities and experiences of each patient remain far more vivid than anything I could think up. Wes Anderson, often lauded for his novel approach to film-making, challenges the perceived originality of creative genius in his latest film, The Grand Budapest Hotel. Speaking of his success as the fictional Republic of Zubrowka’s national hero, Tom Wilkinson’s ‘The Author’ confesses at the outset that his much-loved classic is pinched from mundane reality.

So begins an exhilarating cinematic adventure, told through chapters of The Author’s famed novel, inspired by the tale related to his younger self (Jude Law), of immigrant lobby boy Zero Moustafa (the twinklingly melancholy F. Murray Abraham, eternally the Salieri of 1984’s Amadeus for most of us).

Wes Anderson is not for everyone. His ensemble cast set pieces, from The Royal Tenenbaums to The Life Aquatic with Steve Zissou, can seem self-satisfied. Cramming in so many famous faces can detract from the interest invested in each character, decorated with superficial quirks, rather than developing their stories in depth. With the right screenplay, however, this approach can be his films’ greatest success. Never was this truer than in The Grand Budapest Hotel, whose doll’s house design and chaptered plot lend themselves to relating brief, transient episodes in multiple characters’ intertwining lives.

Despite the brevity of each star actor’s turn, Anderson succeeds in challenging many cinematic clichés. He transforms one of our most reserved thespians, Ralph Fiennes, into campily comic concierge, M. Gustave. Filming on a tight schedule, with the entire cast staying together, coupled with his characteristic cinematography and set design, achieves the sense of attending a theatre company production. By casting well-known actors against type, from Willem Defoe to Tilda Swinton, Anderson seems to suggest that we may all be playing temporary roles and might just as easily wake up one morning being someone else entirely.

The 80-year-old aristocrat Madame Céline Villeneuve Desgoffe und Taxis’ romance, murder and contested legacy, a stolen company production. By casting well-known actors against type, from Willem Defoe to Tilda Swinton, Anderson seems to suggest that we may all be playing temporary roles and might just as easily wake up one morning being someone else entirely.

The Author credits his fortune to a tale told by a lonely hotelier, alluding to the inspiration of Anderson’s own screenplay by the writings of Austrian playwright and novelist Stefan Zweig (1881–1942). This charmingly escapist film offers a message that for all The Grand Budapest Hotel’s apparent creativity, it too is pinched from reality – like, perhaps, all other works of fiction. So as we leave the cinema, returning to more mundane surroundings, we may take comfort from Anderson’s proposition: that the real magic is where we are, right now.

Table DS1 Diagnoses mentioned on discharge from hospital (N=274): longitudinal analysis of 730 men and women from the Scottish Dementia Research Interest Register

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Hospital admissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
</tr>
<tr>
<td>Dementia (including MCI)</td>
<td>146 (53.3)</td>
</tr>
<tr>
<td>Falls or collapse</td>
<td>42 (15.3)</td>
</tr>
<tr>
<td>Ischaemic heart disease</td>
<td>29 (10.6)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>28 (10.2)</td>
</tr>
<tr>
<td>Cataract</td>
<td>19 (6.9)</td>
</tr>
<tr>
<td>Senility</td>
<td>19 (6.9)</td>
</tr>
<tr>
<td>Stroke</td>
<td>13 (4.7)</td>
</tr>
<tr>
<td>Fracture</td>
<td>13 (4.7)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>5 (2.9)</td>
</tr>
</tbody>
</table>

* This table displays the number of individuals who had any mention of these conditions on discharge. Thus, the right hand column does not total 274.

Table DS2 Comparison of SDRIR registrants with complete data for all variables and those who were missing data for one or more variables: longitudinal analysis of 730 men and women from the Scottish Dementia Research Interest Register

<table>
<thead>
<tr>
<th></th>
<th>Complete data for all variables</th>
<th>Missing data in ≥1 variable</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>576</td>
<td>154</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td>mean (SD) 76.9 (8.0)</td>
<td>74.1 (8.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>N (%) 268 (46.5)</td>
<td>81 (52.6)</td>
<td>0.18</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Early onset AD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N (%) 47 (8.2)</td>
<td>27 (17.5)</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Late onset AD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N (%) 331 (57.5)</td>
<td>88 (57.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>N (%) 92 (16.0)</td>
<td>16 (10.4)</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>N (%) 65 (11.3)</td>
<td>14 (9.1)</td>
</tr>
<tr>
<td></td>
<td>Other¹</td>
<td>N (%) 41 (7.1)</td>
<td>9 (5.8)</td>
</tr>
<tr>
<td>Vascular risk factors²</td>
<td>N (%) 305 (53.0)</td>
<td>71 (46.1)</td>
<td>0.13</td>
</tr>
<tr>
<td>Any comorbidity³</td>
<td>N (%) 307 (53.3)</td>
<td>96 (62.3)</td>
<td>0.05</td>
</tr>
<tr>
<td>No carers</td>
<td>N (%) 12 (2.1)</td>
<td>36 (23.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prescribed cholinesterase inhibitor</td>
<td>N (%) 440 (76.4)</td>
<td>104 (67.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Prescribed antipsychotic</td>
<td>N (%) 25 (4.3)</td>
<td>9 (5.8)</td>
<td>0.62</td>
</tr>
<tr>
<td>Prescribed potentially inappropriate medication⁴</td>
<td>N (%) 59 (10.2)</td>
<td>10 (6.5)</td>
<td>0.16</td>
</tr>
<tr>
<td>Mini-mental state examination</td>
<td>mean (SD) 21.2 (5.9)</td>
<td>22.1 (6.2)</td>
<td>0.16</td>
</tr>
<tr>
<td>Instrumental Activities of Daily Living Scale</td>
<td>mean (SD) 3.8 (2.2)</td>
<td>2.8 (2.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>Physical Self-Maintenance Scale</td>
<td>mean (SD) 4.3 (1.9)</td>
<td>4.0 (2.3)</td>
<td>0.25</td>
</tr>
<tr>
<td>Neuropsychiatric Inventory (total)</td>
<td>mean (SD) 11.7 (15.1)</td>
<td>9.7 (16.8)</td>
<td>0.19</td>
</tr>
<tr>
<td>Neuropsychiatric Inventory (carer distress)</td>
<td>mean (SD) 6.7 (8.1)</td>
<td>4.5 (7.1)</td>
<td>0.002</td>
</tr>
<tr>
<td>Clinical Dementia Rating Scale (overall rating)</td>
<td>0 N (%) 3 (0.5)</td>
<td>22 (17.9)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>0.5 N (%) 247 (42.9)</td>
<td>38 (30.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 N (%) 231 (40.1)</td>
<td>30 (24.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 N (%) 78 (13.5)</td>
<td>18 (14.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 N (%) 17 (3.0)</td>
<td>15 (12.2)</td>
<td></td>
</tr>
<tr>
<td>Clinical Dementia Rating Scale (sum of values)</td>
<td>mean (SD) 5.5 (3.6)</td>
<td>7.4 (5.2)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

¹ ‘Other dementia’ comprises DLB, PDD, FTLD, and other (not specified)
² Vascular risk factors include hypertension, hypercholesterolaemia, diabetes and smoking
³ Comorbidity includes cancer, respiratory disease, and diabetes
⁴ Potentially inappropriate medication according to updated Beers criteria (Campanelli et al. [2012] J Am Geriatr Soc 2012;60(4):616-31.)
Prediction of general hospital admission in people with dementia: cohort study
Tom C. Russ, Mario A. Parra, Alison E. Lim, Emma Law, Peter J. Connelly and John M. Starr
BJP 2015, 206:153-159.
Access the most recent version at DOI: 10.1192/bjp.bp.113.137166

Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2014/11/05/bjp.bp.113.137166.DC1

This article cites 32 articles, 4 of which you can access for free at:
http://bjp.rcpsych.org/content/206/2/153#BIBL

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
http://bjp.rcpsych.org/letters/submit/bjprcpsych;206/2/153

Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/