Many older adults with chronic illnesses have depression, which worsens their outcomes and undermines treatment adherence. Chronic obstructive pulmonary disease (COPD) with co-occurring depression exemplifies the challenge in managing chronic illnesses that require patient participation in care. A personalised intervention for depression and COPD (PID-C) targeting treatment adherence with treatment as usual (TAU). In 138 patients with major depression and severe COPD, PID-C led to a higher remission rate and a greater reduction in depressive symptoms and in dyspnoea-related disability than TAU over 28 weeks and 6 months after the last session. If replicated, PID-C may serve as a care model for patients with both depression and medical illnesses with a deteriorating course.

Method

Participants were recruited from consecutive admissions to an acute in-patient pulmonary rehabilitation unit. They signed consent approved by the Weill-Cornell Institutional Review Board. The British Journal of Psychiatry

Results

Pulmonary patients (n = 898) were screened and 138 met criteria and provided signed consent (see online Fig. DS1 for CONSORT diagram). There were no significant clinical differences among participants randomised to PID-C or TAU. During the intervention phase 12 (18%) in the PID-C and 12 (17%) in the TAU group died. Other attrition was 25% (n = 17) in the PID-C and 17% (n = 12) in the TAU group. There were no significant differences in demographics, depression and disability between those who dropped out and those who completed the study.

By the time of discharge, 88 participants had failed to remit (HRSD >7). The PID-C group had a higher remission rate (HRSD ≤7) than TAU participants (Wald $\chi^2 = 5.78$, d.f. = 1, $P = 0.016$, hazard ratio (HR) = 2.18; number needed to treat:...
have severe illnesses and burdensome treatment requirements. This study is unique because it targeted patients with depression at the most severe end of a deteriorating medical illness with a bleak prognosis evidenced by their high mortality (23% in 52 weeks). As PID-C requires only brief training it could be implemented by organisations serving patients with COPD such as home healthcare and rehabilitation programmes.

Study limitations include brief assessments and high attrition, both influenced by the severity of COPD. Concerns about burden limited the number of assessments. People who are severely ill with COPD may refuse follow-up because of fatigue. Nonetheless, both arms had similar attrition. Although PID-C focused on treatment adherence, other factors, including increased physician attention, may have mediated its benefits.

In conclusion, a personalised intervention offered by care managers over a period of 28 weeks increased remission rates, and improved depressive symptoms and dyspnoea-related disability more than TAU. These benefits were sustained for an additional 6 months. A next step may be to deliver and study PID-C in a group format and facilitate its dissemination. This intervention may serve as a care model for people with both depression and a medical illness with a deteriorating course, who often neglect their own care.

3.83, Fig. 1). Mixed-effects modelling showed that the PID-C group had a greater decline in HRSMD than those in the TAU group between discharge and 28 weeks (treatment \(\times \) time: \(F_{(1,196)} = 5.40; P = 0.021 \); effect size at 28 weeks was 0.53 (95% CI 0.09–0.97). The PID-C group experienced greater reduction in dyspnoea-related disability (PFSDQ-M) than the TAU group (treatment \(\times \) time: \(F_{(1,197)} = 4.11; P = 0.044 \); effect size at 28 weeks was 0.40 (95% CI –0.01 to 0.87) (Fig. 1). Mixed-effects modelling showed that the PID-C group had greater decline in HRSMD than the TAU group during the follow-up phase (treatment: \(F_{(1,105)} = -2.41; P = 0.018 \); PID-C: least square mean at 28 weeks 9.12 (s.e. = 0.96) and at 52 weeks 9.44 (s.e. = 1.06); TAU: least square mean at 28 weeks 12.24 (s.e. = 0.87) and at 52 weeks 11.43 (s.e. = 1.02). The advantage of PID-C over TAU on the PFSDQ-M was maintained even after the intervention ended (treatment \(\times \) time: \(t = -1.61, d.f. = 57.5, P = 0.113 \), Fig. 1). Comparison of least square means at 28 weeks favoured PID-C (\(t_{(28)} = -3.11; P = 0.002 \)). All comparisons cited above were similar to imputed model analyses.

Discussion

We found that PID-C led to a higher remission rate of depression (1 more remission every 3.83 patients), and also reduced depressive symptoms and dyspnoea-related disability more than TAU in community residing patients with major depression and severe COPD. These benefits lasted 6 months after the intervention end. Even though COPD has a deteriorating course, dyspnoea-related disability did not worsen in the PID-C group over 1 year. If replicated, PID-C may serve as a management model for the intervention ended (treatment \(\times \) time: \(F_{(1,197)} = 4.11; P = 0.044 \); effect size at 28 weeks was 0.40 (95% CI –0.01 to 0.87) (Fig. 1). Mixed-effects modelling showed that the PID-C group had greater decline in HRSMD than those in the TAU group between discharge and 28 weeks (treatment \(\times \) time: \(F_{(1,196)} = 5.40; P = 0.021 \); effect size at 28 weeks was 0.53 (95% CI 0.09–0.97). The PID-C group experienced greater reduction in dyspnoea-related disability (PFSDQ-M) than the TAU group (treatment \(\times \) time: \(F_{(1,197)} = 4.11; P = 0.044 \); effect size at 28 weeks was 0.40 (95% CI –0.01 to 0.87) (Fig. 1). Mixed-effects modelling showed that the PID-C group had greater decline in HRSMD than the TAU group during the follow-up phase (treatment: \(F_{(1,105)} = -2.41; P = 0.018 \); PID-C: least square mean at 28 weeks 9.12 (s.e. = 0.96) and at 52 weeks 9.44 (s.e. = 1.06); TAU: least square mean at 28 weeks 12.24 (s.e. = 0.87) and at 52 weeks 11.43 (s.e. = 1.02). The advantage of PID-C over TAU on the PFSDQ-M was maintained even after the intervention ended (treatment \(\times \) time: \(t = -1.61, d.f. = 57.5, P = 0.113 \), Fig. 1). Comparison of least square means at 28 weeks favoured PID-C (\(t_{(28)} = -3.11; P = 0.002 \)). All comparisons cited above were similar to imputed model analyses.

We thank Timothy E. Clark and Susan Friedman, LCSW for their contributions to this study.

Acknowledgements

References

Online supplement

Personalised intervention for depression and COPD (PID-C)

Session 1 (rehabilitation hospital)
Introduction of the role of care manager

- Describe the intervention and explain how it might help.

Assessment of barriers to treatment
Use this guide to identify causes of barriers to treatment in each individual patient.

- Misconceptions about COPD and depression.
- Misunderstanding about treatment and about the actual regimen.
- Misattribution of depressive symptoms.
- Hopelessness.
- Overestimation of the energy needed to perform daily exercises.
- Dissatisfaction with prior treatment or aftercare arrangements.
- Logistic barriers to treatment, for example scheduling visits and access to care, transportation, finances.

Education

- Brief discussion of facts about depression and its impact on the care of COPD.

Sessions 2–9 (at home)
Ongoing assessment

- Depressive symptoms, dyspnoea-related disability.
- Treatment recommendations (rehabilitative, medical, psychiatric) and barriers to engagement.

Address barriers to treatment

Focus on barriers to treatment pertinent to the individual patient.

- Misconceptions about COPD and depression: address incorrect facts about COPD and depression, recognise and address stigma.
- Misunderstanding about the actual regimen: discuss the role of prescribed treatment and exercise in reducing dyspnoea and disability and in preventing exacerbations.
- Misattribution of depressive symptoms: identify likely contributors to symptoms and clarify the role of prescribed antidepressant treatment in reducing them.
- Hopelessness: identify hopelessness as a symptom of depression that fuels poor expectations about treatment. Discuss the role of antidepressant treatment and exercise in improving function and in conferring a feeling of empowerment. Offer support.
- Overestimation of the energy needed to perform daily exercises: describe in realistic terms what needs to be done, when and how.
- Dissatisfaction with aftercare: help patient develop a plan to address concerns (for example coach patient to express their concerns and ask question of health professionals).
- Logistic barriers: help patients develop concrete strategies to address practical issues (for example identify ways to attend appointments; devise reminders for taking medications and conducting exercises; enlist help of family members and social services).

Collaboration with physicians

Inform the physicians about any significant changes in the patient's status as well as any problems with treatment adherence, and engage them in addressing them.

The manual is available on request from the authors.
CONTACTED BY THE STUDY TEAM (n = 898)

MET SELECTION CRITERIA AFTER IN-PERSON ASSESSMENT (n = 147)

EXCLUDED AT IN-PERSON ASSESSMENT (n = 751)
- Not depressed (n = 588)
- Other diagnoses (n = 87)
- Refused (n = 31)
- Other exclusions (n = 28)
- Received other treatment (n = 17)

RANDOMISED AT ADMISSION TO REHABILITATION (n = 138)

ALLOCATED TO INTERVENTION (n = 67)
- Failed to complete the baseline assessment (n = 9)

ALLOCATED TO USUAL CARE (n = 71)
- Failed to complete the baseline assessment (n = 9)

EXITED DURING THE TREATMENT PHASE (n = 29)
- Died (n = 12)
- Too sick medically (n = 3)
- Admitted to nursing home (n = 3)
- Cannot be located (n = 5)
- Refused (n = 4)

RATED AT END OF TREATMENT (28 WEEKS) (n = 38)

EXITED DURING THE FOLLOW-UP PHASE (n = 11)
- Died (n = 5)
- Cannot be located (n = 4)
- Refused (n = 4)
- Other (n = 1)

RATED AT 52 WEEKS (n = 27)

EXITED DURING THE FOLLOW-UP PHASE (n = 17)
- Died (n = 5)
- Too sick medically (n = 1)
- Went to nursing home (n = 1)
- Cannot be located (n = 8)
- Refused (n = 2)

RATED AT 52 WEEKS (n = 29)

Fig. DS1 CONSORT diagram: participant progress through the phases of the randomised trial.
Personalised intervention for people with depression and severe COPD
George S. Alexopoulos, Dimitris N. Kiosses, Jo Anne Sirey, Dora Kanellopoulos, Richard S. Novitch, Samiran Ghosh, Joanna K. Seirup and Patrick J. Raue
BJP published online February 7, 2013 Access the most recent version at DOI: 10.1192/bjp.bp.112.120139

Supplementary Material
Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2013/01/31/bjp.bp.112.120139.DC1

References
This article cites 0 articles, 0 of which you can access for free at:
http://bjp.rcpsych.org/content/early/2013/01/30/bjp.bp.112.120139#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

P<P
Published online 2013-02-07T00:05:17-08:00 in advance of the print journal.

You can respond to this article at
http://bjp.rcpsych.org/letters/submit/bjprcpsych;bjp.bp.112.120139v1

Downloaded from
http://bjp.rcpsych.org/ on June 27, 2017
Published by The Royal College of Psychiatrists

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/