Depression is the most common comorbidity of epilepsy and there is a close bidirectional relationship between the two conditions. People with epilepsy have increased incidence rates of depression and anxiety in the 3 years before the onset of their first seizure and subsequent epilepsy diagnosis. These findings suggest common underlying pathophysiological mechanisms that both lower seizure threshold and increase risk for mood disturbance. Treatments for the two conditions also overlap. Some anti-epileptic medications are used to treat mood disorders and vagal nerve stimulation, originally developed as a treatment for medically intractable seizures, is an effective treatment for seasonal affective disorder and non-seasonal depression. Depression may, therefore, be an effective treatment for symptoms of low mood in epilepsy at lower intensities than those typically used to treat seasonal affective disorder. Further work is needed to investigate this possibility with an adequate placebo condition.

The primary outcome measure of the trial was seizure control (trial registration at ClinicalTrials.gov: NCT01028456). The efficacy of bright light therapy for seizure control in this patient sample have been reported separately. This paper describes the efficacy of bright light therapy on the secondary outcome measures of anxiety and depression in the sample. The trial methods and design have been described previously in accordance with the CONSORT statement guidelines for reporting the results of RCTs. Modifications and deviations from the registered protocol are presented in the online supplement.

Method

The seasonal hours of daylight in the baseline and treatment phases equally balanced 2 weeks either side of the winter.
Participants

Participants were recruited directly from the epilepsy clinics at the National Hospital for Neurology and Neurosurgery in London, UK. Adult patients (over the age of 18) with medically intractable, focal epilepsy, who reported an average of four seizures or more a month in the clinic were eligible to participate in the trial. Patients who had undergone previous epilepsy surgery and who continued to experience seizures were not excluded. Patients with an underlying progressive neurological disorder and those who were not able to give informed consent to participate in the study were excluded. In total 101 participants were recruited to the trial and 58 returned full questionnaire data for analyses (n = 27 in the low-intensity group; n = 31 high-intensity group). In the high-intensity group, 15.6% (n = 8) of participants failed to return their HADS questionnaires. In the low-intensity group, 22% (n = 11) failed to return their completed questionnaires (Fisher’s exact test, not significant, P > 0.05). Patients who failed to return the full set of questionnaires did not differ from those who returned completed questionnaires in terms of their age, or initial levels of anxiety or depression reported at the beginning of the study (T1). There was no gender bias in the patients who failed to return their questionnaires (Fisher’s exact test P > 0.05). Figure 2 shows patient losses through the trial and Table 1 details the baseline demographic and clinical characteristics of the group.

Statistical analyses

Factorial repeated measures ANOVA were used to examine the effects of bright light therapy in the high- and low-intensity groups on the self-reported measures of anxiety and depression collected at the beginning of the baseline period in September 2010 (T1), at the end of the baseline period, in December 2010 (T2) and at the end of the treatment period, March/April 2011 (T3).

Results

Bright light therapy tolerability

The high-intensity group used their light boxes for an average of 79.5 days (s.d. = 6.3, maximum 84, minimum 54) over the 12-week period of the trial and the low-intensity group used them for an average of 77.9 days (s.d. = 9.2, maximum 84, minimum 40). There were no significant differences between the high- and low-intensity groups in the number of hours that they used their light boxes over the trial period (t = 0.77, d.f. = 56, P > 0.05). The high- and low-intensity groups did not differ in the number of seizures they reported during the 12-week trial (t = -1.8, d.f. = 56, P > 0.05) or the extent of seizure reduction they reported compared with baseline measures (t = -0.56, P > 0.05). Full details of the efficacy of bright light therapy for seizure control in this group have been previously published.13

Anxiety

For the anxiety scores, Mauchly’s test indicated that the assumption of sphericity had been violated for the main effect of time of assessment (χ² = 9.2, d.f. = 2, P = 0.01) therefore degrees of freedom were corrected using Greenhouse–Geiser estimates of sphericity. There was a significant effect of the time of assessment at...
Light therapy for anxiety and depression in epilepsy

Depression

Mauchly’s test indicated that the assumption of sphericity was not violated for the main effect of time of assessment on the depression scores ($\chi^2 = 4.6, \text{d.f.} = 2, P > 0.05$). There was a significant effect of the time of assessment at $P < 0.001$ on the self-reported levels of depression on the HADS ($F = 8.9, \text{d.f.} = 2$). Contrasts revealed that the depression scores were significantly lower for both the high- and low-intensity groups at the end of the baseline phase (T_2) compared with the levels reported at the beginning of the study (T_1) ($t = 2.1, \text{d.f.} = 57, P = 0.04$). A further significant decrease in depression scores was reported at the end of the treatment phase (T_3) in both groups ($t = 3.0, \text{d.f.} = 57, P < 0.01$). There was no significant interaction between group and time of assessment on the HADS depression score ($F = 1.3, \text{d.f.} = 2, P > 0.05$) (Fig. 4).

Changes in clinically significant levels of anxiety and depression

At the beginning of the trial 16 patients in the high-intensity group and 10 in the low-intensity group scored eight or more on the anxiety scale of the HADS, indicating clinically significant

Table 1 Baseline demographic and clinical characteristics of the group

<table>
<thead>
<tr>
<th></th>
<th>Low-intensity group ($n = 27$)</th>
<th>High-intensity group ($n = 31$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years: mean (s.d.)</td>
<td>42.9 (11.9)</td>
<td>46.6 (12.8)</td>
</tr>
<tr>
<td>Gender, n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Female</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Epilepsy, n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal lobe focus</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Frontal lobe focus</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Othera</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

a. ‘Other’ includes foci lateralised to one hemisphere but not clearly localised, and patients with multifocal seizures.

$P < 0.01$ on the self-reported levels of anxiety on the HADS ($F = 5.9, \text{d.f.} = 1.7, P < 0.01$). *Post hoc* contrasts revealed that the anxiety scores were significantly lower at the end of the treatment phase (T_3) than the two earlier assessments (T_1 and T_2) in both the high- and low-intensity groups. There was no significant difference between the measures of anxiety at T_1 and T_2. There was no significant interaction between group and time of assessment on the HADS anxiety score ($F = 0.8, \text{d.f.} = 1.7, P > 0.05$) (Fig. 3).

Fig. 2 Participant flow diagram.

Exclusion criteria

- Not meeting inclusion criteria ($n = 423$)
- Declined to participate ($n = 279$)

Allocation

- **Randomised** ($n = 101$)
 - Allocated to placebo arm ($n = 50$)
 - Received allocated intervention ($n = 45$)
 - Did not receive allocated intervention ($n = 5$)
 - Failed to return baseline data ($n = 3$)
 - Increased anti-epileptic medications during baseline ($n = 1$)
 - Underwent surgical treatment ($n = 1$)
 - Did not receive allocated intervention ($n = 51$)
 - Received allocated intervention ($n = 46$)
 - Did not receive allocated intervention ($n = 5$)
 - Increased anti-epileptic medications during baseline ($n = 4$)
 - Changed mind ($n = 1$)

- **Follow-up**
 - Lost to follow-up ($n = 1$)
 - Discontinued intervention ($n = 6$)
 - Found light unpleasant ($n = 1$)
 - Treatment impractical for lifestyle ($n = 1$)
 - Perceived lack of efficacy ($n = 1$)
 - Decreased ($n = 1$)
 - Increased anti-epileptic medications ($n = 2$)
 - Did not return complete Hospital Anxiety and Depression Scale ($n = 11$)

- **Analysis**
 - Analysed ($n = 27$)

Analysis

- Analysed ($n = 31$)

Randomisation

- Enrolment
 - Allocated to placebo arm ($n = 50$)
 - Received allocated intervention ($n = 45$)
 - Did not receive allocated intervention ($n = 5$)
 - Received allocated intervention ($n = 45$)
 - Did not receive allocated intervention ($n = 5$)
 - Failed to return baseline data ($n = 3$)
 - Increased anti-epileptic medications during baseline ($n = 1$)
 - Underwent surgical treatment ($n = 1$)

- Assessed for eligibility ($n = 821$)
 - Excluded ($n = 270$)
 - Not meeting inclusion criteria ($n = 423$)
 - Declined to participate ($n = 279$)

Enrolment
levels of anxiety. At the end of the trial, 9 of the 16 patients (56%) in the high-intensity group had reduced their scores to eight or below on the HADS compared with 2 of the 10 (20%) in the low-intensity group ($\chi^2 = 3.31$, d.f. = 1, $P < 0.05$).

At the beginning of the trial six patients in the high-intensity group and seven in the low-intensity group scored eight or more on the depression scale of the HADS, indicating clinically significant symptoms of depression. At the end of the trial, four of the six patients (66%) in the high-intensity group had reduced their scores to eight or below compared with three of the seven (43%) in the low-intensity group ($\chi^2 = 0.12$, d.f. = 1, $P > 0.05$).

Mood and seizure control

There were no significant correlations between the number of seizures (partial, generalised and total) recorded over the baseline period and measures of anxiety at T_1 and T_3. However, depression scores at T_1 were significantly correlated with the number of drop attacks recorded over the baseline period (Pearson correlation 0.31, $P = 0.01$). In the treatment phase of the study, measures of anxiety and depression at T_2 and T_3 were not significantly correlated with the number of seizures recorded (partial, generalised or total) at T_2 or T_3. In addition there were no significant correlations between the change in seizure frequency from T_2 to T_3 (seizure reduction) and changes in self-reported measures of anxiety and depression over the same period.

Discussion

Although there was a significant reduction in the severity of self-reported symptoms of both anxiety and depression at the end of the trial, these reductions were observed in both the high- and low-intensity patient groups. There were no significant differences in the HADS scores of patients in the low- and high-intensity arms of the trial. Reductions in anxiety and depression were not related to changes in seizure frequency over the course of the trial. This is not surprising since it is often the diagnosis of epilepsy itself and the concomitant unpredictability of seizure occurrence that are associated with elevated levels of anxiety and depression in this population, not the number of seizures experienced.

At face value, these results suggest that bright light therapy is no more effective than a placebo in reducing symptoms of anxiety and depression in people with epilepsy. However, a number of features in the data suggest that there may be some value in pursuing this line of enquiry further. Although levels of depression significantly reduced over the baseline period ($P < 0.04$), the reduction was significantly more marked over the subsequent trial period ($P < 0.01$). Given the decline in depression scores over the baseline period probably derived from the placebo effects associated with being enrolled on a trial with weekly contact from the researchers, one would not expect a further, steeper decline in the latter half of the trial when the contact routines were well established. It is unlikely that relaxation during the light therapy sessions had a significant effect on the patients as they had to keep their eyes open during the session and were encouraged to use the light while carrying out routine tasks in the morning (including eating breakfast and checking emails). However, exposure to bright light in the morning can help to regulate the sleep–wake cycle, as can a fixed morning routine, and these factors may have had a significant clinical effect on measures of mood in both the high- and low-intensity groups, independent of the intensity of the light they were exposed to.

These results prompt an examination of the placebo condition employed. We employed a 2000 lux light box as the placebo condition in this trial on the basis of the dose–response relationship in bright light therapy established in the treatment of seasonal affective disorder. Exposure to 2000–2500 lux typically requires treatment times of at least 2 h to provide a therapeutic effect on low mood in seasonal affective disorder populations. The dose–response relationship in seasonal affective disorder has guided much of the research and clinical practice in bright light therapy, with greater intensities of light now being used for...
shorter duration in clinical populations. However, lower intensities of light have proved effective in reducing symptoms in some patients with less severe symptoms in seasonal affective disorder, albeit at longer durations than employed in this study. It is possible that lower intensities of light are required in different clinical populations, such as people with epilepsy, who may present with less severe symptoms of mood disorder than those typically seen in seasonal affective disorder samples. If this is the case, our placebo condition, the low-intensity bright light therapy, may have been more powerful than we intended.

The difficulties of creating an effective placebo that keeps the participants masked to the treatment arm to which they have been allocated in a study of bright light therapy have been previously discussed. One solution may be to utilise light from different parts of the spectrum (for example red light v. blue light) following the findings from studies that have suggested it may be exposure to light within a relatively narrow spectrum, rather than overall luminance, that may be the trigger for the therapeutic effects seen in conditions that respond to the regulation of melatonin.

The numbers of patients in our sample who presented with clinically significant levels of anxiety and depression were small. The finding that high-intensity light therapy may be beneficial in reducing the symptoms of anxiety in this group is encouraging, but further work will be needed to confirm these preliminary results, given the small sample size in this study. All of the patients who participated in this study had medically intractable epilepsy and experienced frequent seizures. The psychosocial and psychiatric characteristics of this population will be different from the majority of people with epilepsy whose seizures are fully controlled by medication. Caution should therefore be employed when generalising the results from this study to the wider population of people with epilepsy.

Future directions

We acknowledge that these findings could be interpreted in a number of ways. Although it is possible that our placebo light was actually a clinically effective intensity for bright light therapy in this patient population, it is also possible that the effects we observed were as a result of factors unrelated to the intensity of the light emitted by the light boxes, including chance, seasonal variation and improved regulation of the sleep–wake cycle. Further work with an adequate placebo condition and a control group given other morning tasks might help to elucidate the mechanisms that may underlie any clinical response. Although the numbers of patients with clinically significant levels of anxiety and depression in this study were relatively small, the initial findings are encouraging. Again, further trials would be needed to establish a therapeutic effect in this population.
Protocol modifications

In the original protocol we had planned to use a light box emitting 100 lux as the placebo. However, the light emitted was too dim and it would have been immediately obvious to the participant that they had been allocated to the placebo arm of the trial. Since careful attention to masking is particularly important in the evaluation of non-pharmacological treatment we changed the protocol to employ a light box emitting 2000 lux as our placebo control. The lamp still appeared very bright (in the absence of the 10,000 lux comparison) but the light emitted should have been at subtherapeutic levels according to the SAD literature on dose–response, which does not indicate any efficacy below 2500 lux, at an exposure of 20 min.13,14

Deviations from protocol

Two patients started and finished the 12-week treatment phase of the trial within 2 weeks of the protocol stipulation of 4 January to 28 March, in order to accommodate their travel/holiday plans.
Bright light therapy for symptoms of anxiety and depression in focal epilepsy: randomised controlled trial
Sallie Baxendale, John O'Sullivan and Dominic Heaney

BJP published online March 21, 2013 Access the most recent version at DOI: 10.1192/bjp.bp.112.122119

Supplementary material can be found at: http://bjp.rcpsych.org/content/suppl/2013/03/13/bjp.bp.112.122119.DC1

This article cites 0 articles, 0 of which you can access for free at: http://bjp.rcpsych.org/content/early/2013/03/12/bjp.bp.112.122119#BIBL

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

Published online 2013-03-21T00:05:17-07:00 in advance of the print journal.

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to The British Journal of Psychiatry go to: http://bjp.rcpsych.org/site/subscriptions/